dshapebivr {Kernelheaping} | R Documentation |
Bivariate Kernel density estimation for data classified in polygons or shapes
Description
Bivariate Kernel density estimation for data classified in polygons or shapes
Usage
dshapebivr(
data,
burnin = 2,
samples = 5,
adaptive = FALSE,
shapefile,
gridsize = 200,
boundary = FALSE,
deleteShapes = NULL,
fastWeights = TRUE,
numChains = 1,
numThreads = 1
)
Arguments
data |
data.frame with 3 columns: x-coordinate, y-coordinate (i.e. center of polygon) and number of observations in area. |
burnin |
burn-in sample size |
samples |
sampling iteration size |
adaptive |
TRUE for adaptive kernel density estimation |
shapefile |
shapefile with number of polygons equal to nrow(data) |
gridsize |
number of evaluation grid points |
boundary |
boundary corrected kernel density estimate? |
deleteShapes |
shapefile containing areas without observations |
fastWeights |
if TRUE weigths for boundary estimation are only computed for first 10 percent of samples to speed up computation |
numChains |
number of chains of SEM algorithm |
numThreads |
number of threads to be used (only applicable if more than one chains) |
Value
The function returns a list object with the following objects (besides all input objects):
Mestimates |
kde object containing the corrected density estimate |
gridx |
Vector Grid of x-coordinates on which density is evaluated |
gridy |
Vector Grid of y-coordinates on which density is evaluated |
resultDensity |
Matrix with Estimated Density for each iteration |
resultX |
Matrix of true latent values X estimates |
Examples
## Not run:
library(maptools)
# Read Shapefile of Berlin Urban Planning Areas (download available from:
# https://www.statistik-berlin-brandenburg.de/opendata/RBS_OD_LOR_2015_12.zip)
Berlin <- rgdal::readOGR("X:/SomeDir/RBS_OD_LOR_2015_12.shp") #(von daten.berlin.de)
# Get Dataset of Berlin Population (download available from:
# https://www.statistik-berlin-brandenburg.de/opendata/EWR201512E_Matrix.csv)
data <- read.csv2("X:/SomeDir/EWR201512E_Matrix.csv")
# Form Dataset for Estimation Process
dataIn <- cbind(t(sapply(1:length(Berlin@polygons),
function(x) Berlin@polygons[[x]]@labpt)), data$E_E65U80)
#Estimate Bivariate Density
Est <- dshapebivr(data = dataIn, burnin = 5, samples = 10, adaptive = FALSE,
shapefile = Berlin, gridsize = 325, boundary = TRUE)
## End(Not run)
# Plot Density over Area:
## Not run: breaks <- seq(1E-16,max(Est$Mestimates$estimate),length.out = 20)
image.plot(x=Est$Mestimates$eval.points[[1]],y=Est$Mestimates$eval.points[[2]],
z=Est$Mestimates$estimate, asp=1, breaks = breaks,
col = colorRampPalette(brewer.pal(9,"YlOrRd"))(length(breaks)-1))
plot(Berlin, add=TRUE)
## End(Not run)