dclass {Kernelheaping} | R Documentation |
Kernel density estimation for classified data
Description
Kernel density estimation for classified data
Usage
dclass(
xclass,
burnin = 2,
samples = 5,
boundary = FALSE,
bw = "nrd0",
evalpoints = 200,
adjust = 1,
dFunc = NULL
)
Arguments
xclass |
classified values; matrix with two columns: lower and upper value |
burnin |
burn-in sample size |
samples |
sampling iteration size |
boundary |
TRUE for positive only data (no positive density for negative values) |
bw |
bandwidth selector method, defaults to "nrd0" see |
evalpoints |
number of evaluation grid points |
adjust |
as in |
dFunc |
character optional density (with "d", "p" and "q" functions) function name for parametric estimation such as "norm" "gamma" or "lnorm" |
Value
The function returns a list object with the following objects (besides all input objects):
Mestimates |
kde object containing the corrected density estimate |
gridx |
Vector Grid on which density is evaluated |
resultDensity |
Matrix with Estimated Density for each iteration |
resultX |
Matrix of true latent values X estimates |
Examples
x=rlnorm(500, meanlog = 8, sdlog = 1)
classes <- c(0,500,1000,1500,2000,2500,3000,4000,5000,6000,8000,10000,15000,Inf)
xclass <- cut(x,breaks=classes)
xclass <- cbind(classes[as.numeric(xclass)], classes[as.numeric(xclass) + 1])
densityEst <- dclass(xclass=xclass, burnin=20, samples=50, evalpoints=1000)
plot(densityEst$Mestimates~densityEst$gridx ,lwd=2, type = "l")