kbMvtSkew {KbMvtSkew} | R Documentation |
Khattree-Bahuguna's Multivariate Skewness
Description
Compute Khattree-Bahuguna's Multivariate Skewness.
Usage
kbMvtSkew(x)
Arguments
x |
a matrix of original observations.
|
Details
Let X=(X1,…,Xp)′
be the multivariate random vector and (Xi1,Xi2,…,Xip)′
be one of the p!
permutations of (X1,…,Xp)′
. We predict Xij
conditionally on subvector (Xi1,…,Xij−1)
and compute the corresponding residual Vij
through a linear regression model for j=2,⋯,p
. For j=1
, we define Vi1=Xi1−Xˉi1
, where Xˉi1
is the mean of Xi1
. For j≥2
, we have
X^i2=β^0+β^1Xi1,Vi2=Xi2−X^i2
X^i3=β^0+β^1Xi1+β^2Xi2,Vi3=Xi3−X^i3
⋮
X^ip=β^0+β^1Xi1+β^2Xi2+⋯+β^p−1Xip−1,Vip=Xip−X^ip.
We calculate the sample skewness δ^ij
of Vij
by the sample Khattree-Bahuguna's univariate skewness formula (see details of kbSkew
that follows) respectively for j=1,⋯,p
and define Δ^i=∑j=1pδ^ij,i=1,2,…,P
for all P=p!
permutations of (X1,…,Xp)′
. The sample Khattree-Bahuguna's multivariate skewness is defined as
Δ^=P1∑i=1PΔ^i.
Clearly, 0≤Δ^≤2p
.
Value
kbMvtSkew
computes the Khattree-Bahuguna's multivairate skewness for a p
-dimensional data.
References
Khattree, R. and Bahuguna, M. (2019). An alternative data analytic approach to measure the univariate and multivariate skewness. International Journal of Data Science and Analytics, Vol. 7, No. 1, 1-16.
See Also
kbSkew
for Khattree-Bahuguna's univariate skewness.
Examples
# Compute Khattree-Bahuguna's multivairate skewness
data(OlymWomen)
kbMvtSkew(OlymWomen[, c("m800","m1500","m3000","marathon")])
[Package
KbMvtSkew version 1.0.2
Index]