PearsonSkew {KbMvtSkew}R Documentation

Pearson's coefficient of skewness

Description

Compute Pearson's coefficient of skewness.

Usage

PearsonSkew(x)

Arguments

x

a vector of original observations.

Details

Pearson's coefficient of skewness is defined as

\gamma_1 = \frac{E[(X - \mu)^3]}{(\sigma^3)}

where \mu = E(X) and \sigma^2 = E[(X - \mu)^2]. The sample version based on a random sample x_1,x_2,\ldots,x_n is defined as

\hat{\gamma_1} = \frac{\sum_{i=1}^n (x_i - \bar{x})^3}{n s^3}

where \bar{x} is the sample mean and s is the sample standard deviation of the data, respectively.

Value

PearsonSkew gives the sample Pearson's univariate skewness.

References

Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 185, 71-110.

Pearson, K. (1895). Contributions to the mathematical theory of evolution II: skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. A 86, 343-414.

Examples

# Compute Pearson's univariate skewness

set.seed(2019)
x <- rnorm(1000) # Normal Distribution
PearsonSkew(x)

set.seed(2019)
y <- rlnorm(1000, meanlog = 1, sdlog = 0.25) # Log-normal Distribution
PearsonSkew(y)


[Package KbMvtSkew version 1.0.2 Index]