MardiaMvtSkew {KbMvtSkew}R Documentation

Mardia's Multivariate Skewness

Description

Compute Mardia's Multivariate Skewness.

Usage

MardiaMvtSkew(x)

Arguments

x

a matrix of original observations.

Details

Given a p-dimensional multivariate random vector with mean vector \boldsymbol{\mu} and positive definite variance-covariance matrix \boldsymbol{\Sigma}, Mardia's multivariate skewness is defined as

\beta_{1,p} = E[(\boldsymbol{X}_1 - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{X}_2 - \boldsymbol{\mu})]^3,

where \boldsymbol{X}_1 and \boldsymbol{X}_2 are independently and identically distributed copies of \boldsymbol{X}. For a multivariate random sample of size n, \boldsymbol{x}_1, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_n, its sample version is defined as

\hat{\beta}_{1,p} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} [(\boldsymbol{x}_i - \bar{\boldsymbol{x}})'\boldsymbol{S}^{-1} (\boldsymbol{x}_j - \bar{\boldsymbol{x}})]^3,

where the sample mean \bar{\boldsymbol{x}} = \frac{1}{n}\sum_{i=1}^{n} \boldsymbol{x}_i and the sample variance-covariance matrix \boldsymbol{S} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) (\boldsymbol{x}_i - \bar{\boldsymbol{x}})'. It is assumed that n \ge p.

Value

MardiaMvtSkew gives the sample Mardia's multivairate skewness.

References

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519–530.

Examples

# Compute Mardia's multivairate skewness

data(OlymWomen)
MardiaMvtSkew(OlymWomen[, c("m800","m1500","m3000","marathon")])


[Package KbMvtSkew version 1.0.2 Index]