kspmControl {KSPM}R Documentation

Control various aspects of the optimisation problem

Description

Allow the user to set some characteristics of the optimisation algorithm

Usage

kspmControl(interval.upper = NA, interval.lower = NA, trace = FALSE,
  optimize.tol = .Machine$double.eps^0.25, NP = NA, itermax = 500,
  CR = 0.5, F = 0.8, initialpop = NULL, storepopfrom = itermax + 1,
  storepopfreq = 1, p = 0.2, c = 0,
  reltol = sqrt(.Machine$double.eps), steptol = itermax,
  parallel = FALSE)

Arguments

interval.upper

integer or vetor of initial maximum value(s) allowed for parameter(s)

interval.lower

integer or vetor of initial maximum value(s) allowed for parameter(s)

trace

boolean. If TRUE parameters value at each iteration are displayed.

optimize.tol

if optimize function is used. See optimize

NP

if DEoptim function is used. See DEoptim.control

itermax

if DEoptim function is used. See DEoptim.control

CR

if DEoptim function is used. See DEoptim.control

F

if DEoptim function is used. See DEoptim.control

initialpop

if DEoptim function is used. See DEoptim.control

storepopfrom

if DEoptim function is used. See DEoptim.control

storepopfreq

if DEoptim function is used. See DEoptim.control

p

if DEoptim function is used. See DEoptim.control

c

if DEoptim function is used. See DEoptim.control

reltol

if DEoptim function is used. See DEoptim.control

steptol

if DEoptim function is used. See DEoptim.control

parallel

if DEoptim function is used. See DEoptim.control

Details

When only one hyperparameter should be estimated, the optimisation problem calls the optimize function from stats basic package. Otherwise, it calls the DEoptim function from the package DEoptim. In both case, the parameters are choosen among the initial interval defined by interval.lower and interval.upper.

Value

search.parameters is an iterative algorithm estimating model parameters and returns the following components:

lambda

tuning parameters for penalization.

beta

vector of coefficients associated with linear part of the model, the size being the number of variable in linear part (including an intercept term).

alpha

vector of coefficients associated with kernel part of the model, the size being the sample size.

Ginv

a matrix used in several calculations. Ginv = (\lambda I + K)^{-1}.

Author(s)

Catherine Schramm, Aurelie Labbe, Celia Greenwood

See Also

link get.parameters for computation of parameters at each iteration


[Package KSPM version 0.2.1 Index]