Kernel_Ridge_MM {KRMM} | R Documentation |
Kernel ridge regression in the mixed model framework
Description
Kernel_Ridge_MM solves kernel ridge regression for various kernels within the following mixed model framework: Y =X*Beta + Z*U + E, where X and Z correspond to the design matrices of predictors with fixed and random effects respectively.
Usage
Kernel_Ridge_MM( Y_train, X_train=as.vector(rep(1,length(Y_train))),
Z_train=diag(1,length(Y_train)), Matrix_covariates_train, method="RKHS",
kernel="Gaussian", rate_decay_kernel=0.1, degree_poly=2, scale_poly=1,
offset_poly=1, degree_anova=3, init_sigma2K=2, init_sigma2E=3,
convergence_precision=1e-8, nb_iter=1000, display="FALSE" )
Arguments
Y_train |
numeric vector; response vector for training data |
X_train |
numeric matrix; design matrix of predictors with fixed effects for training data (default is a vector of ones) |
Z_train |
numeric matrix; design matrix of predictors with random effects for training data (default is identity matrix) |
Matrix_covariates_train |
numeric matrix of entries used to build the kernel matrix |
method |
character string; RKHS, GBLUP or RR-BLUP |
kernel |
character string; Gaussian, Laplacian or ANOVA (kernels for RKHS regression ONLY, the linear kernel is automatically built for GBLUP and RR-BLUP and hence no kernel is supplied for these methods) |
rate_decay_kernel |
numeric scalar; hyperparameter of the Gaussian, Laplacian or ANOVA kernel (default is 0.1) |
degree_poly , scale_poly , offset_poly |
numeric scalars; parameters for polynomial kernel (defaults are 2, 1 and 1 respectively) |
degree_anova |
numeric scalar; parameter for ANOVA kernel (defaults is 3) |
init_sigma2K , init_sigma2E |
numeric scalars; initial guess values, associated to the mixed model variance parameters, for the EM-REML algorithm (defaults are 2 and 3 respectively) |
convergence_precision , nb_iter |
numeric scalars; convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached (defaults are 1e-8 and 1000 respectively) |
display |
boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration |
Details
The matrix Matrix_covariates_train is mandatory to build the kernel matrix for model estimation, and prediction (see Predict_kernel_Ridge_MM).
Value
Beta_hat |
Estimated fixed effect(s) |
Sigma2K_hat , Sigma2E_hat |
Estimated variance components |
Vect_alpha |
Estimated dual variables |
Gamma_hat |
RR-BLUP of covariates effects (i.e. available for RR-BLUP method only) |
Author(s)
Laval Jacquin <jacquin.julien@gmail.com>
References
Jacquin et al. (2016). A unified and comprehensible view of parametric and kernel methods for genomic prediction with application to rice (in peer review).
Robinson, G. K. (1991). That blup is a good thing: the estimation of random effects. Statistical science, 534 15-32
Foulley, J.-L. (2002). Algorithme em: théorie et application au modèle mixte. Journal de la Société française de Statistique 143, 57-109
Examples
## Not run:
library(KRMM)
### SIMULATE DATA
set.seed(123)
p=200
N=100
beta=rnorm(p, mean=0, sd=1.0)
X=matrix(runif(p*N, min=0, max=1), ncol=p, byrow=TRUE) #X: covariates (i.e. predictors)
f=X%*%beta #f: data generating process (i.e. DGP)
E=rnorm(N, mean=0, sd=0.5)
Y=f+E #Y: observed response data
hist(f)
hist(beta)
Nb_train=floor((2/3)*N)
###======================================================================###
### CREATE TRAINING AND TARGET SETS FOR RESPONSE AND PREDICTOR VARIABLES ###
###======================================================================###
Index_train=sample(1:N, size=Nb_train, replace=FALSE)
### Covariates (i.e. predictors) for training and target sets
Predictors_train=X[Index_train, ]
Response_train=Y[Index_train]
Predictors_target=X[-Index_train, ]
True_value_target=f[-Index_train] #True value (generated by DGP) we want to predict
###=================================================================================###
### PREDICTION WITH KERNEL RIDGE REGRESSION SOLVED WITHIN THE MIXED MODEL FRAMEWORK ###
###=================================================================================###
#Linear kernel
Linear_KRR_model_train = Kernel_Ridge_MM(Y_train=Response_train,
Matrix_covariates_train=Predictors_train, method="RR-BLUP")
f_hat_target_Linear_KRR = Predict_kernel_Ridge_MM( Linear_KRR_model_train,
Matrix_covariates_target=Predictors_target )
#Gaussian kernel
Gaussian_KRR_model_train = Kernel_Ridge_MM( Y_train=Response_train,
Matrix_covariates_train=Predictors_train, method="RKHS", rate_decay_kernel=5.0)
f_hat_target_Gaussian_KRR = Predict_kernel_Ridge_MM( Gaussian_KRR_model_train,
Matrix_covariates_target=Predictors_target )
#Graphics for RR-BLUP
dev.new(width=30, height=20)
par(mfrow=c(3,1))
plot(f_hat_target_Linear_KRR, True_value_target)
plot(Linear_KRR_model_train$Gamma_hat, xlab="Feature (i.e. covariate) number",
ylab="Feature effect (i.e. Gamma_hat)", main="BLUP of covariate effects based on training data")
hist(Linear_KRR_model_train$Gamma_hat, main="Distribution of BLUP of
covariate effects based on training data" )
# Compare prediction based on linear (i.e. RR-BLUP) and Gaussian kernel
par(mfrow=c(1,2))
plot(f_hat_target_Linear_KRR, True_value_target)
plot(f_hat_target_Gaussian_KRR, True_value_target)
mean((f_hat_target_Linear_KRR - True_value_target)^2)
mean((f_hat_target_Gaussian_KRR - True_value_target)^2)
## End(Not run)