EM_REML_MM {KRMM} | R Documentation |
Expectation-Maximization (EM) algorithm for the restricted maximum likelihood (REML) associated to the mixed model
Description
EM_REML_MM estimates the components and variance parameters of the following mixed model; Y =X*Beta + Z*U + E, using the EM-REML algorithm.
Usage
EM_REML_MM( Mat_K_inv, Y, X, Z, init_sigma2K,
init_sigma2E, convergence_precision,
nb_iter, display )
Arguments
Mat_K_inv |
numeric matrix; the inverse of the kernel matrix |
Y |
numeric vector; response vector |
X |
numeric matrix; design matrix of predictors with fixed effects |
Z |
numeric matrix; design matrix of predictors with random effects |
init_sigma2K , init_sigma2E |
numeric scalars; initial guess values, associated to the mixed model variance parameters, for the EM-REML algorithm |
convergence_precision , nb_iter |
convergence precision (i.e. tolerance) associated to the mixed model variance parameters, for the EM-REML algorithm, and number of maximum iterations allowed if convergence is not reached |
display |
boolean (TRUE or FALSE character string); should estimated components be displayed at each iteration |
Value
Beta_hat |
Estimated fixed effect(s) |
Sigma2K_hat , Sigma2E_hat |
Estimated variance components |
Author(s)
Laval Jacquin <jacquin.julien@gmail.com>
References
Foulley, J.-L. (2002). Algorithme em: théorie et application au modèle mixte. Journal de la Société française de Statistique 143, 57-109