multi_analysis {KODAMA} | R Documentation |
Continuous Information
Description
Summarization of the continuous information.
Usage
multi_analysis (data,
y,
FUN=c("continuous.test","correlation.test"), ...)
Arguments
data |
the matrix containing the continuous values. Each row corresponds to a different sample. Each column corresponds to a different variable. |
y |
the classification of the cohort. |
FUN |
function to be considered. Choices are " |
... |
further arguments to be passed to or from methods. |
Value
The function returns a table with the summarized information. If the number of group is equal to two, the p-value is computed using the Wilcoxon rank-sum test, Kruskal-Wallis test otherwise.
Author(s)
Stefano Cacciatore
References
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
See Also
categorical.test
,continuous.test
,correlation.test
, txtsummary
Examples
data(clinical)
multi_analysis(clinical[,c("BMI","Age")],clinical[,"Hospital"],FUN="continuous.test")