continuous.test {KODAMA} | R Documentation |
Continuous Information
Description
Summarization of the continuous information.
Usage
continuous.test (name,
x,
y,
digits = 3,
scientific = FALSE,
range = c("IQR","95%CI"),
logchange = FALSE,
pos=2,
method=c("non-parametric","parametric"),
total.column=FALSE, ...)
Arguments
name |
the name of the feature. |
x |
the information to summarize. |
y |
the classification of the cohort. |
digits |
how many significant digits are to be used. |
scientific |
either a logical specifying whether result should be encoded in scientific format. |
range |
the range to be visualized. |
logchange |
either a logical specifying whether log2 of fold change should be visualized. |
pos |
a value indicating the position of range to be visualized. 1 for column, 2 for row. |
method |
a character string indicating which test method is to be computed. "non-parametric" (default), or "parametric". |
total.column |
option to visualize the total (by default = " |
... |
further arguments to be passed to or from methods. |
Value
The function returns a table with the summarized information and the relative p-value. For non-parametric method, if the number of group is equal to two, the p-value is computed using the Wilcoxon rank-sum test, Kruskal-Wallis test otherwise. For parametric method, if the number of group is equal to two, the p-value is computed using the Student's t-Test, ANOVA one-way otherwise.
Author(s)
Stefano Cacciatore
References
Cacciatore S, Luchinat C, Tenori L
Knowledge discovery by accuracy maximization.
Proc Natl Acad Sci U S A 2014;111(14):5117-22. doi: 10.1073/pnas.1220873111. Link
Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA
KODAMA: an updated R package for knowledge discovery and data mining.
Bioinformatics 2017;33(4):621-623. doi: 10.1093/bioinformatics/btw705. Link
See Also
correlation.test
, categorical.test
, txtsummary
Examples
data(clinical)
hosp=clinical[,"Hospital"]
gender=clinical[,"Gender"]
GS=clinical[,"Gleason score"]
BMI=clinical[,"BMI"]
age=clinical[,"Age"]
A=categorical.test("Gender",gender,hosp)
B=categorical.test("Gleason score",GS,hosp)
C=continuous.test("BMI",BMI,hosp,digits=2)
D=continuous.test("Age",age,hosp,digits=1)
rbind(A,B,C,D)