find_Kmeans_best_k {KMEANS.KNN} | R Documentation |
find_Kmeans_best_k
Description
find_Kmeans_best_k
Usage
find_Kmeans_best_k(data, max_k = 10, Method = "coude", verbose = FALSE)
Arguments
data |
The dataset for which K-means clustering will be performed. |
max_k |
The maximum number of clusters to consider. It defaults to 10. |
Method |
The method used to determine the optimal number of clusters. Acceptable values are "coude" (elbow method), "silhouette" (silhouette method), or "gap" (gap statistics). |
verbose |
Logical. If TRUE, additional output is provided. |
Value
This function does not return a value but prints the optimal number of clusters based on the chosen method and plots the corresponding graph.
Examples
data(iris)
find_Kmeans_best_k(iris[,-5],9,Method = "coude")
[Package KMEANS.KNN version 0.1.0 Index]