warpInitLen {KGode} | R Documentation |
The 'warpInitLen' function
Description
This function is used to find the optmised initial value of the hyper parameter for the sigmoid basis function which is used for warping.
Usage
warpInitLen(peod, eps, rkgres, lens)
Arguments
peod |
vector(of length n_s) containing the period of warped signal. n_s is the length of the ode states. |
eps |
vector(of length n_s) containing the uncertainty level of the period. n_s is the length of the ode states. |
rkgres |
list containing interpolation and 'rkhs' class objects for all ode states. |
lens |
vector(of length n_l) containing a list of hyper parameters of sigmoid basis function. n_l is the length of user defined hyper parameters of the sigmoid basis functino. |
Details
Arguments of the 'warpfun' function are 'ode' class, 'rkhs' class, period of warped signal, uncertainty level of the period, initial values of the hyper parameters for sigmoid basis function, noisy observations and the time points that user want to warped. It return the interpolation for each of the ode states. The ode parameters are estimated using gradient matching, and the results are stored in the 'ode' class as the ode_par attribute.
Value
return list containing :
wres- vector(of length n_s) contaning the optimised initial hyper parameters of sigmoid basis function for each ode states.
Author(s)
Mu Niu mu.niu@glasgow.ac.uk
Examples
## Not run:
require(mvtnorm)
noise = 0.1
SEED = 19537
set.seed(SEED)
## Define ode function, we use lotka-volterra model in this example.
## we have two ode states x[1], x[2] and four ode parameters alpha, beta, gamma and delta.
LV_fun = function(t,x,par_ode){
alpha=par_ode[1]
beta=par_ode[2]
gamma=par_ode[3]
delta=par_ode[4]
as.matrix( c( alpha*x[1]-beta*x[2]*x[1] , -gamma*x[2]+delta*x[1]*x[2] ) )
}
## Define the gradient of ode function against ode parameters
## df/dalpha, df/dbeta, df/dgamma, df/ddelta where f is the differential equation.
LV_grlNODE= function(par,grad_ode,y_p,z_p) {
alpha = par[1]; beta= par[2]; gamma = par[3]; delta = par[4]
dres= c(0)
dres[1] = sum( -2*( z_p[1,]-grad_ode[1,])*y_p[1,]*alpha )
dres[2] = sum( 2*( z_p[1,]-grad_ode[1,])*y_p[2,]*y_p[1,]*beta)
dres[3] = sum( 2*( z_p[2,]-grad_ode[2,])*gamma*y_p[2,] )
dres[4] = sum( -2*( z_p[2,]-grad_ode[2,])*y_p[2,]*y_p[1,]*delta)
dres
}
## create a ode class object
kkk0 = ode$new(2,fun=LV_fun,grfun=LV_grlNODE)
## set the initial values for each state at time zero.
xinit = as.matrix(c(0.5,1))
## set the time interval for the ode numerical solver.
tinterv = c(0,6)
## solve the ode numerically using predefined ode parameters. alpha=1, beta=1, gamma=4, delta=1.
kkk0$solve_ode(c(1,1,4,1),xinit,tinterv)
## Add noise to the numerical solution of the ode model and use it as the noisy observation.
n_o = max( dim( kkk0$y_ode) )
t_no = kkk0$t
y_no = t(kkk0$y_ode) + rmvnorm(n_o,c(0,0),noise*diag(2))
## create a ode class object by using the simulation data we created from the Ode numerical solver.
## If users have experiment data, they can replace the simulation data with the experiment data.
## set initial value of Ode parameters.
init_par = rep(c(0.1),4)
init_yode = t(y_no)
init_t = t_no
kkk = ode$new(1,fun=LV_fun,grfun=LV_grlNODE,t=init_t,ode_par= init_par, y_ode=init_yode )
## The following examples with CPU or elapsed time > 10s
## Use function 'rkg' to estimate the Ode parameters.
ktype ='rbf'
rkgres = rkg(kkk,y_no,ktype)
bbb = rkgres$bbb
###### warp all ode states
peod = c(6,5.3) ## the guessing period
eps= 1 ## the uncertainty level of period
###### learn the initial value of the hyper parameters of the warping basis function
fixlens=warpInitLen(peod,eps,rkgres)
## End(Not run)