rkhs {KGode} | R Documentation |
The 'rkhs' class object
Description
This class provide the interpolation methods using reproducing kernel Hilbert space.
Format
R6Class
object.
Value
an R6Class
object which can be used for doing interpolation using reproducing kernel Hilbert space.
Methods
predict()
This method is used to make prediction on given time points
skcross()
This method is used to do cross-validation to estimate the weighting parameter lambda of L^2 norm.
Public fields
y
matrix(of size n_s*n_o) containing observation.
t
vector(of length n_o) containing time points for observation.
b
vector(of length n_o) containing coefficients of kernel or basis functions.
lambda
scalar containing the weighting parameter for L2 norm of the reproducing kernel Hilbert space.
ker
kernel class object containing kernel.
Methods
Public methods
Method new()
Usage
rkhs$new(y = NULL, t = NULL, b = NULL, lambda = NULL, ker = NULL)
Method greet()
Usage
rkhs$greet()
Method showker()
Usage
rkhs$showker()
Method predict()
Usage
rkhs$predict()
Method predictT()
Usage
rkhs$predictT(testT)
Method lossRK()
Usage
rkhs$lossRK(par, tl1, y_d, jitter)
Method grlossRK()
Usage
rkhs$grlossRK(par, tl1, y_d, jitter)
Method numgrad()
Usage
rkhs$numgrad(par, tl1, y_d, jitter)
Method skcross()
Usage
rkhs$skcross(init, bounded)
Method mkcross()
Usage
rkhs$mkcross(init)
Method loss11()
Usage
rkhs$loss11(par, tl1, y_d, jitter)
Method grloss11()
Usage
rkhs$grloss11(par, tl1, y_d, jitter)
Method clone()
The objects of this class are cloneable with this method.
Usage
rkhs$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Author(s)
Mu Niu, mu.niu@glasgow.ac.uk
Examples
## Not run:
require(mvtnorm)
noise = 0.1 ## set the variance of noise
SEED = 19537
set.seed(SEED)
## Define ode function, we use lotka-volterra model in this example.
## we have two ode states x[1], x[2] and four ode parameters alpha, beta, gamma and delta.
LV_fun = function(t,x,par_ode){
alpha=par_ode[1]
beta=par_ode[2]
gamma=par_ode[3]
delta=par_ode[4]
as.matrix( c( alpha*x[1]-beta*x[2]*x[1] , -gamma*x[2]+delta*x[1]*x[2] ) )
}
## Define the gradient of ode function against ode parameters
## df/dalpha, df/dbeta, df/dgamma, df/ddelta where f is the differential equation.
LV_grlNODE= function(par,grad_ode,y_p,z_p) {
alpha = par[1]; beta= par[2]; gamma = par[3]; delta = par[4]
dres= c(0)
dres[1] = sum( -2*( z_p[1,]-grad_ode[1,])*y_p[1,]*alpha )
dres[2] = sum( 2*( z_p[1,]-grad_ode[1,])*y_p[2,]*y_p[1,]*beta)
dres[3] = sum( 2*( z_p[2,]-grad_ode[2,])*gamma*y_p[2,] )
dres[4] = sum( -2*( z_p[2,]-grad_ode[2,])*y_p[2,]*y_p[1,]*delta)
dres
}
## create a ode class object
kkk0 = ode$new(2,fun=LV_fun,grfun=LV_grlNODE)
## set the initial values for each state at time zero.
xinit = as.matrix(c(0.5,1))
## set the time interval for the ode numerical solver.
tinterv = c(0,6)
## solve the ode numerically using predefined ode parameters. alpha=1, beta=1, gamma=4, delta=1.
kkk0$solve_ode(c(1,1,4,1),xinit,tinterv)
## Add noise to the numerical solution of the ode model and use it as the noisy observation.
n_o = max( dim( kkk0$y_ode) )
t_no = kkk0$t
y_no = t(kkk0$y_ode) + rmvnorm(n_o,c(0,0),noise*diag(2))
## Create a ode class object by using the simulation data we created from the ode numerical solver.
## If users have experiment data, they can replace the simulation data with the experiment data.
## Set initial value of ode parameters.
init_par = rep(c(0.1),4)
init_yode = t(y_no)
init_t = t_no
kkk = ode$new(1,fun=LV_fun,grfun=LV_grlNODE,t=init_t,ode_par= init_par, y_ode=init_yode )
## The following examples with CPU or elapsed time > 5s
####### rkhs interpolation for the 1st state of ode using 'rbf' kernel
### set initial value of length scale of rbf kernel
initlen = 1
aker = RBF$new(initlen)
bbb = rkhs$new(t(y_no)[1,],t_no,rep(1,n_o),1,aker)
## optimise lambda by cross-validation
## initial value of lambda
initlam = 2
bbb$skcross( initlam )
## make prediction using the 'predict()' method of 'rkhs' class and plot against the time.
plot(t_no,bbb$predict()$pred)
## End(Not run)