GetGCVbw1D {KFPCA} | R Documentation |
Bandwidth selection through GCV for one-dimension cases
Description
Bandwidth selection through generalized cross-validation (GCV) for one-dimension cases.
Usage
GetGCVbw1D(Lt, Ly, kern, dataType = "Sparse")
Arguments
Lt |
A |
Ly |
A |
kern |
A |
dataType |
A |
Value
A scalar denoting the optimal bandwidth.
Examples
# Generate data
n <- 100
interval <- c(0, 10)
lambda_1 <- 9 #the first eigenvalue
lambda_2 <- 1.5 #the second eigenvalue
eigfun <- list()
eigfun[[1]] <- function(x){cos(pi * x/10)/sqrt(5)}
eigfun[[2]] <- function(x){sin(pi * x/10)/sqrt(5)}
score <- cbind(rnorm(n, 0, sqrt(lambda_1)), rnorm(n, 0, sqrt(lambda_2)))
DataNew <- GenDataKL(n, interval = interval, sparse = 6:8, regular = FALSE,
meanfun = function(x){0}, score = score,
eigfun = eigfun, sd = sqrt(0.1))
# Optimal bandwidth for mean function estimate
bwOpt <- GetGCVbw1D(DataNew$Lt, DataNew$Ly, kern = "epan")
[Package KFPCA version 2.0 Index]