FPCscoreLSE {KFPCA} | R Documentation |
Least square estimates of functional principal component scores
Description
Least square estimates (LSE) of functional principal component scores.
Usage
FPCscoreLSE(Lt, Ly, kern, bw, FPC_dis, RegGrid, more = FALSE)
Arguments
Lt |
A |
Ly |
A |
kern |
A |
bw |
A scalar denoting the bandwidth for mean function estimate. |
FPC_dis |
A |
RegGrid |
A |
more |
Logical; If |
Value
If more = FALSE
, a n by nK
matrix
containing the estimates of the FPC scores is returned, where n is the sample size. If more = TRUE
, a list
containing the following components is returned:
score |
a n by |
meanest_fine |
Mean function estimates at all observation time points. |
FPC_dis_fine |
Eigenfunction estimates at all observation time points. |
Examples
# Generate data
n <- 100
interval <- c(0, 10)
lambda_1 <- 9 #the first eigenvalue
lambda_2 <- 1.5 #the second eigenvalue
eigfun <- list()
eigfun[[1]] <- function(x){cos(pi * x/10)/sqrt(5)}
eigfun[[2]] <- function(x){sin(pi * x/10)/sqrt(5)}
score <- cbind(rnorm(n, 0, sqrt(lambda_1)), rnorm(n, 0, sqrt(lambda_2)))
DataNew <- GenDataKL(n, interval = interval, sparse = 3:5, regular = FALSE,
meanfun = function(x){0}, score = score,
eigfun = eigfun, sd = sqrt(0.1))
basis <- fda::create.bspline.basis(interval, nbasis = 13, norder = 4,
breaks = seq(0, 10, length.out = 11))
Klist <- KFPCA(DataNew$Lt, DataNew$Ly, interval, nK = 2, bw = 1,
nRegGrid = 51, fdParobj = basis)
# Just an example to explain the use of FPCscoreLSE().
# One can obtain FPC scores estimates for KFPCA method
# by KFPCA() directly. Note that FPCscoreLSE() can also be used
# to estimate FPC scores for methods except KFPCA.
scoreKFPCA <- FPCscoreLSE(DataNew$Lt, DataNew$Ly, kern = "epan",
bw = Klist$bwmean, FPC_dis = Klist$FPC_dis,
RegGrid = seq(interval[1], interval[2], length.out = 51))