fitSSM {KFAS} | R Documentation |
Maximum Likelihood Estimation of a State Space Model
Description
Function fitSSM
finds the maximum likelihood estimates for unknown
parameters of an arbitary state space model, given the user-defined model
updating function.
Usage
fitSSM(model, inits, updatefn, checkfn, update_args = NULL, ...)
Arguments
model |
Model object of class |
inits |
Initial values for |
updatefn |
User defined function which updates the model given the
parameters. Must be of form |
checkfn |
Optional function of form |
update_args |
Optional list containing additional arguments to |
... |
Further arguments for functions |
Details
Note that fitSSM
actually minimizes -logLik(model)
, so for
example the Hessian matrix returned by hessian = TRUE
has an opposite
sign than expected.
This function is simple wrapper around optim
. For optimal performance in
complicated problems, it is more efficient to use problem specific codes with
calls to logLik
method directly.
In fitSSM
, the objective function for optim
first
updates the model based on the current values of the parameters under optimization,
using function updatefn
. Then function checkfn
is used for checking that the resulting model is valid
(the default checkfn
checks for non-finite values and overly large (>1e7)
values in covariance matrices). If checkfn
returns TRUE
, the
log-likelihood is computed using a call -logLik(model,check.model = FALSE)
.
Otherwise objective function returns value corresponding to
.Machine$double.xmax^0.75
.
The default updatefn
can be used to estimate the values marked as NA
in unconstrained time-invariant covariance matrices Q and H. Note that the
default updatefn
function cannot be used with trigonometric seasonal
components as its covariance structure is of form \sigma
I,
i.e. not all NA
's correspond to unique value.
The code for the default updatefn
can be found in the examples.
As can be seen from the function definition, it is assumed that
unconstrained optimization method such as BFGS
is used.
Note that for non-Gaussian models derivative-free optimization methods such as Nelder-Mead might be more reliable than methods which use finite difference approximations. This is due to noise caused by the relative stopping criterion used for finding approximating Gaussian model. In most cases this does not seem to cause any problems though.
Value
A list with elements
optim.out |
Output from function |
model |
Model with estimated parameters. |
See Also
logLik
, KFAS
,
boat
, sexratio
,
GlobalTemp
, SSModel
,
importanceSSM
, approxSSM
for more examples.
Examples
# Example function for updating covariance matrices H and Q
# (also used as a default function in fitSSM)
updatefn <- function(pars, model){
if(any(is.na(model$Q))){
Q <- as.matrix(model$Q[,,1])
naQd <- which(is.na(diag(Q)))
naQnd <- which(upper.tri(Q[naQd,naQd]) & is.na(Q[naQd,naQd]))
Q[naQd,naQd][lower.tri(Q[naQd,naQd])] <- 0
diag(Q)[naQd] <- exp(0.5 * pars[1:length(naQd)])
Q[naQd,naQd][naQnd] <- pars[length(naQd)+1:length(naQnd)]
model$Q[naQd,naQd,1] <- crossprod(Q[naQd,naQd])
}
if(!identical(model$H,'Omitted') && any(is.na(model$H))){#'
H<-as.matrix(model$H[,,1])
naHd <- which(is.na(diag(H)))
naHnd <- which(upper.tri(H[naHd,naHd]) & is.na(H[naHd,naHd]))
H[naHd,naHd][lower.tri(H[naHd,naHd])] <- 0
diag(H)[naHd] <-
exp(0.5 * pars[length(naQd)+length(naQnd)+1:length(naHd)])
H[naHd,naHd][naHnd] <-
pars[length(naQd)+length(naQnd)+length(naHd)+1:length(naHnd)]
model$H[naHd,naHd,1] <- crossprod(H[naHd,naHd])
}
model
}
# Example function for checking the validity of covariance matrices.
checkfn <- function(model){
#test positive semidefiniteness of H and Q
!inherits(try(ldl(model$H[,,1]),TRUE),'try-error') &&
!inherits(try(ldl(model$Q[,,1]),TRUE),'try-error')
}
model <- SSModel(Nile ~ SSMtrend(1, Q = list(matrix(NA))), H = matrix(NA))
#function for updating the model
update_model <- function(pars, model) {
model["H"] <- pars[1]
model["Q"] <- pars[2]
model
}
#check that variances are non-negative
check_model <- function(model) {
(model["H"] > 0 && model["Q"] > 0)
}
fit <- fitSSM(inits = rep(var(Nile)/5, 2), model = model,
updatefn = update_model, checkfn = check_model)
# More complex model
set.seed(1)
n <- 1000
x1 <- rnorm(n)
x2 <- rnorm(n)
beta1 <- 1 + cumsum(rnorm(n, sd = 0.1)) # time-varying regression effect
beta2 <- -0.3 # time-invariant effect
# ARMA(2, 1) errors
z <- arima.sim(model = list(ar = c(0.7, -0.4), ma = 0.5), n = n, sd = 0.5)
# generate data, regression part + ARMA errors
y <- beta1 * x1 + beta2 * x2 + z
ts.plot(y)
# build the model using just zeros for now
# But note no extra white noise term so H is fixed to zero
model <- SSModel(y ~ SSMregression(~ x1 + x2, Q = 0, R = matrix(c(1, 0), 2, 1)) +
SSMarima(rep(0, 2), 0, Q = 0), H = 0)
# update function for fitSSM
update_function <- function(pars, model){
## separate calls for model components, use exp to ensure positive variances
tmp_reg <- SSMregression(~ x1 + x2, Q = exp(pars[1]), R = matrix(c(1, 0), 2, 1))
tmp_arima <- try(SSMarima(artransform(pars[2:3]),
artransform(pars[4]), Q = exp(pars[5])), silent = TRUE)
# stationary check, see note in artransform docs
if(inherits(tmp_arima, "try-error")) {
model$Q[] <- NA # set something to NA just in case original model is ok
return(model) # this goes to checkfn and causes rejection due to NA values
}
model["Q", etas = "regression"] <- tmp_reg$Q
model["Q", etas = "arima"] <- tmp_arima$Q
model["T", "arima"] <- tmp_arima$T
model["R", states = "arima", etas = "arima"] <- tmp_arima$R
model["P1", "arima"] <- tmp_arima$P1
# you could also directly build the whole model here again, i.e.
# model <- SSModel(y ~
# SSMregression(~ x1 + x2, Q = exp(pars[1]), R = matrix(c(1, 0), 2, 1)) +
# SSMarima(artransform(pars[2:3]), artransform(pars[4]), Q = exp(pars[5])),
# H = 0)
model
}
fit <- fitSSM(model = model,
inits = rep(0.1, 5),
updatefn = update_function, method = "BFGS")
ts.plot(cbind(beta1, KFS(fit$model)$alphahat[, "x1"]), col = 1:2)