predict.KERE {KERE} | R Documentation |
make predictions from a "KERE" object.
Description
Similar to other predict methods, this functions predicts fitted values and class labels from a fitted KERE
object.
Usage
## S3 method for class 'KERE'
predict(object, kern, x, newx,...)
Arguments
object |
fitted |
kern |
the built-in kernel classes in KERE. Objects can be created by calling the rbfdot, polydot, tanhdot, vanilladot, anovadot, besseldot, laplacedot, splinedot functions etc. (see example.) |
x |
the original design matrix for training |
newx |
matrix of new values for |
... |
other parameters to |
Details
The fitted \alpha_0 + K * \alpha
at newx is returned as a size nrow(newx)*length(lambda)
matrix for various lambda values where the KERE
model was fitted.
Value
The fitted \alpha_0 + K * \alpha
is returned as a size nrow(newx)*length(lambda)
matrix. The row represents the index for observations of newx. The column represents the index for the lambda sequence.
Author(s)
Yi Yang, Teng Zhang and Hui Zou
Maintainer: Yi Yang <yiyang@umn.edu>
References
Y. Yang, T. Zhang, and H. Zou. "Flexible Expectile Regression in Reproducing Kernel Hilbert Space." ArXiv e-prints: stat.ME/1508.05987, August 2015.
Examples
# create data
N <- 100
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- 3*runif(N)
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + X1*X3
sigma <- sqrt(var(Y)/SNR)
Y <- Y + X2*rnorm(N,0,sigma)
X <- cbind(X1,X2,X3)
# set gaussian kernel
kern <- rbfdot(sigma=0.1)
# define lambda sequence
lambda <- exp(seq(log(0.5),log(0.01),len=10))
# run KERE
m1 <- KERE(x=X, y=Y, kern=kern, lambda = lambda, omega = 0.5)
# create newx for prediction
N1 <- 5
X1 <- runif(N1)
X2 <- 2*runif(N1)
X3 <- 3*runif(N1)
newx <- cbind(X1,X2,X3)
# make prediction
p1 <- predict.KERE(m1, kern, X, newx)
p1