sae.ul.f {JoSAE} | R Documentation |
Unit-level small area estimation under heteroscedasticity.
Description
The only function that should be used is sae.ul.f
which wraps
the data preparation (ul.data.prep.f
), parameter estimation
(ul.reml.f
), and EBLUP and MSE
estimation (ul.est.f
) functions. The other functions
are helpers that do not need to be called by the user directly.
Usage
sae.ul.f(...)
ul.data.prep.f(k.ij, samp.data, population.data, formula, domain.col,
sample.id.col, neg.sfrac, pop.r, sum.i.k.ij.sq.r, N.i, ...)
ul.reml.f(samp.data, formula, samp.agg.X.pop, y.name, X.names, ...)
ul.est.f(samp.data, samp.agg.X.pop, X.names, y.name, beta.hat,
cov.beta.hat, sig.sq.e, sig.sq.v, V.bar.ee, V.bar.vv, V.bar.ve,
neg.sfrac, resid = F, ...)
Arguments
samp.data |
Data frame of unit-level sample data of the response and explanatory variables. Transformations of x have to be calculated before hand, not using formula. |
k.ij |
Vector of the same length and corresponding to |
population.data |
Data frame of domain-level means of the explanatory variables. Names have to match to sample data. |
formula |
The fixed effects formula to be used in the mixed model using |
domain.col |
Character string identifying the column name in |
sample.id.col |
Character string identifying the column name in |
neg.sfrac |
Boolean. Are sampling fractions negligible? |
pop.r |
Only required if |
sum.i.k.ij.sq.r |
Only required if |
N.i |
Only required if |
samp.agg.X.pop |
Data frame containing the aggregated sample data and domain-level explanatory variables. |
y.name |
Character string identifying the column name of the response. |
X.names |
Vector of character strings identifying the column names of the explanatory variables. |
beta.hat |
Vector of estimated fixed effects. |
cov.beta.hat |
Covariance matrix of fixed effects. |
sig.sq.e |
Residual variance. |
sig.sq.v |
Random effect variance. |
V.bar.ee |
Assymptotic variance of the residual variance. |
V.bar.vv |
Assymptotic variance of the random effect variance. |
V.bar.ve |
Assymptotic covariance of the residual and random effect variance. |
resid |
Boolean. Should residuals be returned? |
... |
Parameters forwarded to other functions. |
Details
These functions can also be used for eblups
without heteroskedasticity as the
the older functions around eblup.mse.f.wrap
.
Value
est |
List of point estimates and standard errors based on
different estimators. |
var.pars |
List of estimated variance parameters. Among others the lme object fitted to the data. See list of arguments above. |
data |
List of data frames in the format required by the other functions. |
Author(s)
Johannes Breidenbach
References
Breidenbach et al. (2018) Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data. Remote Sensing of Environment.
Examples
library(nlme)
#sample data
data(ulal.sub.samp.dat)
#domain means of x
data(ulal.sub.dom.dat)
#eblup under homoskedasticity
res <-
sae.ul.f(samp.data=ulal.sub.samp.dat,
population.data=ulal.sub.dom.dat,
k.ij=ulal.sub.samp.dat[,"k.ij.one"],
formula=w.VMPRHA ~ elev.mean + elev.mean.sq,
domain.col="stand.ID",
sample.id.col="plot.ID",
neg.sfrac=TRUE)
#eblup under heteroskedasticity
res <-
sae.ul.f(samp.data=ulal.sub.samp.dat,
population.data=ulal.sub.dom.dat,
k.ij=ulal.sub.samp.dat[,"k.ij.em.0.48"],
formula=w.VMPRHA ~ elev.mean + elev.mean.sq,
domain.col="stand.ID",
sample.id.col="plot.ID",
neg.sfrac=TRUE)