modelDiagnostics {JWileymisc} | R Documentation |
Model Diagnostics Functions
Description
A set of functions to calculate
model diagnostics on models, including constructors,
a generic function, a test of whether an object is of the
modelDiagnostics
class, and methods.
Usage
modelDiagnostics(object, ...)
as.modelDiagnostics(x)
is.modelDiagnostics(x)
## S3 method for class 'lm'
modelDiagnostics(
object,
ev.perc = 0.001,
robust = FALSE,
distr = "normal",
standardized = TRUE,
...
)
Arguments
object |
A fitted model object, with methods for
|
... |
Additional arguments, passed to |
x |
An object to test or a list to coerce to a
|
ev.perc |
A real number between 0 and 1 indicating the proportion of the theoretical distribution beyond which values are considered extreme values (possible outliers). Defaults to .001. |
robust |
Whether to use robust mean and standard deviation estimates for normal distribution |
distr |
A character string given the assumed distribution.
Passed on to |
standardized |
A logical whether to use standardized residuals.
Defaults to |
Value
A logical (is.modelDiagnostics
) or
a modelDiagnostics object (list) for
as.modelDiagnostics
and modelDiagnostics
.
Examples
testm <- stats::lm(mpg ~ hp * factor(cyl), data = mtcars)
md <- modelDiagnostics(testm)
plot(md$residualDiagnostics$testDistribution)
md$extremeValues
plot(md)
md <- modelDiagnostics(testm, ev.perc = .1)
md$extremeValues
plot(md, ncol = 2)
testdat <- data.frame(
y = c(1, 2, 2, 3, 3, NA, 9000000, 2, 2, 1),
x = c(1, 2, 3, 4, 5, 6, 5, 4, 3, 2))
modelDiagnostics(
lm(y ~ x, data = testdat, na.action = "na.omit"),
ev.perc = .1)$extremeValues
modelDiagnostics(
lm(y ~ x, data = testdat, na.action = "na.exclude"),
ev.perc = .1)$extremeValues
## clean up
rm(testm, md, testdat)