plot.survfitJM {JMbayes} | R Documentation |
Plot Method for survfit.JMbayes and survfit.mvJMbayes Objects
Description
Produces plots of conditional probabilities of survival.
Usage
## S3 method for class 'survfit.JMbayes'
plot(x, estimator = c("both", "mean", "median"),
which = NULL, fun = NULL, invlink = NULL, conf.int = FALSE,
fill.area = FALSE, col.area = "grey", col.abline = "black", col.points = "black",
add.last.time.axis.tick = FALSE, include.y = FALSE, main = NULL,
xlab = NULL, ylab = NULL, ylab2 = NULL, lty = NULL, col = NULL,
lwd = NULL, pch = NULL, ask = NULL, legend = FALSE, ...,
cex.axis.z = 1, cex.lab.z = 1, xlim = NULL)
## S3 method for class 'survfit.mvJMbayes'
plot(x, split = c(1, 1), which_subjects = NULL,
which_outcomes = NULL, surv_in_all = TRUE, include.y = TRUE, fun = NULL,
abline = NULL,
main = NULL, xlab = "Time", ylab = NULL, zlab = "Event-Free Probability",
include_CI = TRUE, fill_area_CI = TRUE, col_points = "black",
pch_points = 1, col_lines = "red", col_lines_CI = "black",
col_fill_CI = "lightgrey", lwd_lines = 2, lty_lines_CI = 2,
cex_xlab = 1, cex_ylab = 1, cex_zlab = 1, cex_main = 1,
cex_axis = 1, ...)
Arguments
x |
an object inheriting from class |
estimator |
character string specifying, whether to include in the plot the mean of
the conditional probabilities of survival, the median or both. The mean and median are
taken as estimates of these conditional probabilities over the M replications of the
Monte Carlo scheme described in |
which |
an integer or character vector specifying for which subjects to produce the
plot. If a character vector, then is should contain a subset of the values of the
|
which_subjects |
an integer vector specifying for which subjects to produce the plot. |
split |
a integer vector of length 2 indicating in how many panels to construct, i.e., number of rows and number of columns. |
which_outcomes |
integer vector indicating which longitudinal outcomes to include in the plot. |
surv_in_all |
logical; should the survival function be included in all panels. |
fun |
a vectorized function defining a transformation of the survival curve. For
example, with |
abline |
a list with arguments to |
invlink |
a function to transform the fitted values of the longitudinal outcome. |
conf.int , include_CI |
logical; if |
fill.area , fill_area_CI |
logical; if |
col.area , col_fill_CI |
the color of the area defined by the confidence interval of the survival function. |
col.abline , col.points , col_points , col_lines , col_lines_CI |
the color for the
vertical line and the points when |
add.last.time.axis.tick |
logical; if |
include.y |
logical; if |
main |
a character string specifying the title in the plot. |
xlab |
a character string specifying the x-axis label in the plot. |
ylab |
a character string specifying the y-axis label in the plot. |
ylab2 |
a character string specifying the y-axis label in the plot,
when |
zlab |
a character string specifying the z-axis (vertical right-hand side) label in the plot. |
lty , lty_lines_CI |
what types of lines to use. |
col |
which colors to use. |
lwd , lwd_lines |
the thickness of the lines. |
pch , pch_points |
the type of points to use. |
ask |
logical; if |
legend |
logical; if |
cex.axis.z , cex.lab.z |
the par |
cex_xlab , cex_ylab , cex_zlab , cex_main , cex_axis |
the par |
xlim |
the par |
... |
extra graphical parameters passed to |
Author(s)
Dimitris Rizopoulos d.rizopoulos@erasmusmc.nl
References
Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. Journal of Statistical Software 72(7), 1–45. doi:10.18637/jss.v072.i07.
Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-Event Data: with Applications in R. Boca Raton: Chapman and Hall/CRC.
Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67, 819–829.
See Also
Examples
## Not run:
# we construct the composite event indicator (transplantation or death)
pbc2$status2 <- as.numeric(pbc2$status != "alive")
pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
# we fit the joint model using splines for the subject-specific
# longitudinal trajectories and a spline-approximated baseline
# risk function
lmeFit <- lme(log(serBilir) ~ ns(year, 2), data = pbc2,
random = ~ ns(year, 2) | id)
survFit <- coxph(Surv(years, status2) ~ drug, data = pbc2.id, x = TRUE)
jointFit <- jointModelBayes(lmeFit, survFit, timeVar = "year")
# we will compute survival probabilities for Subject 2 in a dynamic manner,
# i.e., after each longitudinal measurement is recorded
ND <- pbc2[pbc2$id == 2, ] # the data of Subject 2
survPreds <- vector("list", nrow(ND))
for (i in 1:nrow(ND)) {
survPreds[[i]] <- survfitJM(jointFit, newdata = ND[1:i, ])
}
# the default call to the plot method using the first three
# longitudinal measurements
plot(survPreds[[3]])
# we produce the corresponding plot
par(mfrow = c(2, 2), oma = c(0, 2, 0, 2))
for (i in c(1,3,5,7)) {
plot(survPreds[[i]], estimator = "median", conf.int = TRUE,
include.y = TRUE, main = paste("Follow-up time:",
round(survPreds[[i]]$last.time, 1)), ylab = "", ylab2 = "")
}
mtext("log serum bilirubin", side = 2, line = -1, outer = TRUE)
mtext("Survival Probability", side = 4, line = -1, outer = TRUE)
## End(Not run)