logLik.JMbayes {JMbayes} | R Documentation |
Log-Likelihood for Joint Models
Description
Computes the log-likelihood for a fitted joint model.
Usage
## S3 method for class 'JMbayes'
logLik(object, thetas, b, priors = TRUE, marginal.b = TRUE,
marginal.thetas = FALSE, full.Laplace = FALSE, useModes = TRUE, ...)
Arguments
object |
an object inheriting from class |
thetas |
a list with values for the joint model's parameters. This should have the same structure as
the |
b |
a numeric matrix with random effects value. This should have the same structure as
the |
priors |
logical, if |
marginal.b |
logical, if |
marginal.thetas |
logical, if |
full.Laplace |
logical, if |
useModes |
logical, if |
... |
extra arguments; currently none is used. |
Details
Let y_i
denote the vectors of longitudinal responses, T_i
the observed event time, and \delta_i
the event indicator for subject i
(i = 1, \ldots, n
). Let also p(y_i | b_i; \theta)
denote the probability
density function (pdf) for the linear mixed model, p(T_i, \delta_i | b_i; \theta)
the pdf for the survival submodel, and
p(b_i; \theta)
the multivariate normal pdf for the random effects, where \theta
denotes the full parameter vector. Then,
if priors = TRUE
, and marginal.b = TRUE
, function logLik()
computes
\log \int p(y_i | b_i; \theta) p(T_i, \delta_i | b_i; \theta) p(b_i; \theta) db_i + \log p(\theta),
where p(\theta)
denotes the prior distribution for the parameters. If priors = FALSE
the prior is excluded from the
computation, i.e.,
\log \int p(y_i | b_i; \theta) p(T_i, \delta_i | b_i; \theta) p(b_i; \theta) db_i,
and when
marginal.b = FALSE
, then the conditional on the random effects log-likelihood is computed, i.e.,
\log p(y_i | b_i; \theta) + \log p(T_i, \delta_i | b_i; \theta) + \log p(b_i; \theta) + \log p(\theta),
when
priors = TRUE
and
\log p(y_i | b_i; \theta) + \log p(T_i, \delta_i | b_i; \theta) + \log p(b_i; \theta),
when priors = FALSE
.
Value
a numeric scalar of class logLik
with the value of the log-likelihood. It also has
the attributes df
the number of parameter (excluding the random effects), and nobs
the number of subjects.
Author(s)
Dimitris Rizopoulos d.rizopoulos@erasmusmc.nl
References
Rizopoulos, D., Hatfield, L., Carlin, B. and Takkenberg, J. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association. to appear.
See Also
Examples
## Not run:
lmeFit <- lme(log(serBilir) ~ ns(year, 2), data = pbc2,
random = ~ ns(year, 2) | id)
survFit <- coxph(Surv(years, status2) ~ 1, data = pbc2.id, x = TRUE)
jointFit <- jointModelBayes(lmeFit, survFit, timeVar = "year")
logLik(jointFit)
logLik(jointFit, priors = FALSE)
logLik(jointFit, marginal.b = FALSE)
## End(Not run)