isdexp {InvStablePrior} | R Documentation |
Bayesian inference for the true rate of double exponential (Laplace) distribution.
Description
Generates random numbers from the prior and posterior distributions of the inverse stable-double exponential model. The random variates can be used to simulate prior and posterior predictive distributions as well.
Usage
isdexp(x, B, alp, rho)
Arguments
x |
vector of double exponential (Laplace) data. |
B |
test size for the adaptive rejection sampling algorithm. |
alp |
value between 0 and 1 that controls the shape of the inverse stable prior. |
rho |
positive value that scales the mean of the inverse stable prior. |
Value
list consisting of the vectors of random numbers from the prior and posterior distributions, the accepted sample size, and the acceptance probability of the adaptive rejection sampling procedure (Algorithm 2 of the first reference below).
References
Cahoy and Sedransk (2019). Inverse stable prior for exponential models. Journal of Statistical Theory and Practice, 13, Article 29. <doi:10.1007/s42519-018-0027-2>
Meerschaert and Straka (2013). Inverse stable subordinators. Math. Model. Nat. Phenom., 8(2), 1-16. <doi:10.1051/mmnp/20138201>
Mainardi, Mura, and Pagnini (2010). The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey. Int. J. Differ. Equ., Volume 2010. <doi:10.1155/2010/104505>
Examples
alp=0.95
require(nimble)
dat=rdexp(30, location = 0, rate = 2)
rho=1/sd(dat)
#b=n
#a=sum(abs(dat) )
#rho=optimize(function(r){exp(-b)*(b/a)^b - (r^b)*exp(-a*r)}, c(0,20), tol=10^(-50) )$min
out= isdexp(dat, B=1000000, alp , rho)
#prior samples
thetprior=unlist(out[2])
summary(thetprior)
#posterior samples
thet=unlist(out[1])
#95% Credible intervals
quantile (thet, c(0.025,0.975) )
summary(thet)
#The accepted sample size:
unlist(out[3])
#The acceptance probability:
unlist(out[4])
#Plotting with normalization to have a maximum of 1
#for comparing prior and posterior
out2=density(thet)
ymaxpost=max(out2$y)
out3=density(thetprior)
ymaxprior=max(out3$y)
plot(out2$x,out2$y/ymaxpost, xlim=c(0,5), col="blue", type="l",
xlab="theta", ylab="density", lwd=2, frame.plot=FALSE)
lines(out3$x,out3$y/ymaxprior,lwd=2,col="red")
#points(dat,rep(0,length(dat)), pch='*')
#Generating 1000 random numbers from the Inverse Stable (alpha=0.4,rho=5) prior
U1 = runif(1000)
U2 = runif(1000)
alp=0.4
rho=5
stab = ( ( sin(alp*pi*U1)*sin((1-alp)*pi*U1)^(1/alp-1) )
/ ( ( sin(pi*U1)^(1/alp) )*abs(log(U2))^(1/alp-1)) )
#Inverse stable random numbers are below:
#rho*stab^(-alp)