simulIVS {IntervalQuestionStat} | R Documentation |
Simulation of interval-valued responses to a questionnaire
Description
This function allows to generate n
interval-valued responses to each
of k
items of a questionnaire. These interval-valued responses are
simulated mimicking the human behavior, considering three different
procedures as it is suggested by De la Rosa de Sáa et al. (2015)
and Lubiano et al. (2021).
Usage
simulIVS(
n,
k,
w1 = 0.05,
w2 = 0.35,
w3 = 0.6,
p = 2,
q = 2,
minimum = 1,
maximum = 7
)
Arguments
n |
A single positive integer indicating the number of different
respondents that have answered to the questionnaire stored as
a unique |
k |
A single positive integer indicating the number of different items
included in the questionnaire stored as a unique |
w1 |
A single real number in |
w2 |
A single real number in |
w3 |
A single real number in |
p |
A single non-negative real number which indicates the first
parameter of a beta distribution. By default, |
q |
A single non-negative real number which indicates the second
parameter of a beta distribution. By default, |
minimum |
A single real number indicating the lower bound of the
interval-valued scale used saved as a unique |
maximum |
A single real number indicating the upper bound of the
interval-valued scale used saved as a unique |
Value
This function returns n
interval-valued responses to each of k
items in a questionnaire contained in a data.frame
with n
rows
and 2k
columns with values in the reference interval
[\code{minimum}, \code{maximum}]
. All interval-valued data's lower
bounds appear in the first k
columns of the data.frame and then all
the corresponding upper bounds appear too.
Author(s)
José García-García garciagarjose@uniovi.es,
with contributions from María Asunción Lubiano lubiano@uniovi.es
References
De la Rosa de Sáa, S.; Gil, M.Á.; González-Rodríguez, G.; López, M.T.; Lubiano M.A. (2015). Fuzzy rating scale-based questionnaires and their statistical analysis, IEEE Transactions on Fuzzy Systems, 23(1):111-126. doi:10.1109/TFUZZ.2014.2307895.
Lubiano, M.A.; García-Izquierdo, A.L.; Gil, M.Á. (2021). Fuzzy rating scales: Does internal consistency of a measurement scale benefit from coping with imprecision and individual differences in psychological rating? Information Sciences, 550:91-108. doi:10.1016/j.ins.2020.10.042.
Examples
## Simulation some interval-valued responses to a questionnaire
## carried out under the following particular conditions
## Number of respondents: n = 100
## Number of items: k = 5
## Procedures proportions: (w1, w2, w3) = (0.10, 0.25, 0.65)
## Beta distribution parameters: (p, q) = (1, 7)
## Reference interval of interval-valued scales: [0, 10]
data <- simulIVS(100, 5, 0.10, 0.25, 0.65, 1, 7, 0, 10)
head(data)