MINTperm {IndepTest} | R Documentation |
MINTknown
Description
Performs an independence test without knowledge of either marginal distribution using permutations.
Usage
MINTperm(x, y, k, w = FALSE, B = 1000)
Arguments
x |
The |
y |
The |
k |
The value of |
w |
The weight vector to used for estimation of the joint entropy |
B |
The number of permutations to use, set at 1000 by default. |
Value
The p
-value corresponding the independence test carried out.
References
Berrett, T. B. and Samworth R. J. (2017). “Nonparametric independence testing via mutual information.” ArXiv e-prints. 1711.06642.
Examples
# Independent univariate normal data
x=rnorm(1000); y=rnorm(1000)
MINTperm(x,y,k=20,B=100)
# Dependent univariate normal data
library(mvtnorm)
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
MINTperm(data[,1],data[,2],k=20,B=100)
# Dependent multivariate normal data
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4)
data=rmvnorm(1000,sigma=Sigma)
MINTperm(data[,1:3],data[,4],k=20,w=TRUE,B=100)
[Package IndepTest version 0.2.0 Index]