MINTknown {IndepTest} | R Documentation |
MINTknown
Description
Performs an independence test when it is assumed that the marginal distribution of Y
is known and can be simulated from.
Usage
MINTknown(x, y, k, ky, w = FALSE, wy = FALSE, y0)
Arguments
x |
The |
y |
The |
k |
The value of |
ky |
The value of |
w |
The weight vector to used for estimation of the joint entropy |
wy |
The weight vector to used for estimation of the marginal entropy |
y0 |
The data matrix of simulated |
Value
The p
-value corresponding the independence test carried out.
References
Berrett, T. B. and Samworth R. J. (2017). “Nonparametric independence testing via mutual information.” ArXiv e-prints. 1711.06642.
Examples
library(mvtnorm)
x=rnorm(1000); y=rnorm(1000);
# Independent univariate normal data
MINTknown(x,y,k=20,ky=30,y0=rnorm(100000))
library(mvtnorm)
# Dependent univariate normal data
data=rmvnorm(1000,sigma=matrix(c(1,0.5,0.5,1),ncol=2))
# Dependent multivariate normal data
MINTknown(data[,1],data[,2],k=20,ky=30,y0=rnorm(100000))
Sigma=matrix(c(1,0,0,0,0,1,0,0,0,0,1,0.5,0,0,0.5,1),ncol=4)
data=rmvnorm(1000,sigma=Sigma)
MINTknown(data[,1:3],data[,4],k=20,ky=30,w=TRUE,wy=FALSE,y0=rnorm(100000))