| summary.insilico {InSilicoVA} | R Documentation | 
Summarizing InSilicoVA Model Fits
Description
This function is the summary method for class insilico.
Usage
## S3 method for class 'insilico'
summary(
  object,
  CI.csmf = 0.95,
  CI.cond = 0.95,
  file = NULL,
  top = 10,
  id = NULL,
  ...
)
Arguments
| object | Fitted  | 
| CI.csmf | Confidence interval for CSMF estimates. | 
| CI.cond | Confidence interval for conditional probability estimates | 
| file | Optional .csv file to write to. If it is specified, individual cause of death distribution will be saved to the file. | 
| top | Number of top causes to display on screen. | 
| id | ID of specific death to display on screen. | 
| ... | Not used. | 
Details
summary.insilico formats some basic information about the InSilicoVA
fitted object on screen and show the several top CSMFs of user's choice. See
below for more detail.
Value
| id.all | all IDs of the deaths. | 
| indiv | individual Cause of Death distribution matrix. | 
| csmf | CSMF distribution and confidence interval for each cause. | 
| csmf.ordered | CSMF distribution and confidence interval for each cause, ordered by mean. | 
| condprob | Conditional probability matrix and confidence intervals. | 
| updateCondProb | Component of  | 
| keepProbbase.level | Component of  | 
| datacheck | Component of  | 
| Nsim | Component of  | 
| thin | Component of  | 
| burnin | Component
of  | 
| jump.scale | Component of  | 
| levels.prior | Component of  | 
| levels.strength | Component of  | 
| trunc.min | Component of  | 
| trunc.max | Component of  | 
| subpop_counts | Component of  | 
| showTop | Component of  | 
Author(s)
Zehang Li, Tyler McCormick, Sam Clark
Maintainer: Zehang Li <lizehang@uw.edu>
References
Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark Probabilistic cause-of-death assignment using verbal autopsies, Journal of the American Statistical Association (2016), 111(515):1036-1049.
See Also
Examples
## Not run: 
# load sample data together with sub-population list
data(RandomVA1)
# extract InterVA style input data
data <- RandomVA1$data
# extract sub-population information. 
# The groups are "HIV Positive", "HIV Negative" and "HIV status unknown".
subpop <- RandomVA1$subpop
# run without subpopulation
fit1<- insilico( data, subpop = NULL, 
              Nsim = 400, burnin = 200, thin = 10 , seed = 1,
              external.sep = TRUE, keepProbbase.level = TRUE)
summary(fit1)
summary(fit1, top = 10)
# save individual COD distributions to files
summary(fit1, file = "results.csv")
## End(Not run)