summary.insilico {InSilicoVA} | R Documentation |
Summarizing InSilicoVA Model Fits
Description
This function is the summary method for class insilico
.
Usage
## S3 method for class 'insilico'
summary(
object,
CI.csmf = 0.95,
CI.cond = 0.95,
file = NULL,
top = 10,
id = NULL,
...
)
Arguments
object |
Fitted |
CI.csmf |
Confidence interval for CSMF estimates. |
CI.cond |
Confidence interval for conditional probability estimates |
file |
Optional .csv file to write to. If it is specified, individual cause of death distribution will be saved to the file. |
top |
Number of top causes to display on screen. |
id |
ID of specific death to display on screen. |
... |
Not used. |
Details
summary.insilico
formats some basic information about the InSilicoVA
fitted object on screen and show the several top CSMFs of user's choice. See
below for more detail.
Value
id.all |
all IDs of the deaths. |
indiv |
individual Cause of Death distribution matrix. |
csmf |
CSMF distribution and confidence interval for each cause. |
csmf.ordered |
CSMF distribution and confidence interval for each cause, ordered by mean. |
condprob |
Conditional probability matrix and confidence intervals. |
updateCondProb |
Component of |
keepProbbase.level |
Component of |
datacheck |
Component of |
Nsim |
Component of |
thin |
Component of |
burnin |
Component
of |
jump.scale |
Component of |
levels.prior |
Component of |
levels.strength |
Component of |
trunc.min |
Component of |
trunc.max |
Component of |
subpop_counts |
Component of |
showTop |
Component of |
Author(s)
Zehang Li, Tyler McCormick, Sam Clark
Maintainer: Zehang Li <lizehang@uw.edu>
References
Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark Probabilistic cause-of-death assignment using verbal autopsies, Journal of the American Statistical Association (2016), 111(515):1036-1049.
See Also
Examples
## Not run:
# load sample data together with sub-population list
data(RandomVA1)
# extract InterVA style input data
data <- RandomVA1$data
# extract sub-population information.
# The groups are "HIV Positive", "HIV Negative" and "HIV status unknown".
subpop <- RandomVA1$subpop
# run without subpopulation
fit1<- insilico( data, subpop = NULL,
Nsim = 400, burnin = 200, thin = 10 , seed = 1,
external.sep = TRUE, keepProbbase.level = TRUE)
summary(fit1)
summary(fit1, top = 10)
# save individual COD distributions to files
summary(fit1, file = "results.csv")
## End(Not run)