stackplot {InSilicoVA} | R Documentation |
plot grouped CSMF from a "insilico" object
Description
Produce bar plot of the CSMFs for a fitted "insilico"
object in broader groups.
Usage
stackplot(
x,
grouping = NULL,
type = c("stack", "dodge")[1],
order.group = NULL,
order.sub = NULL,
err = TRUE,
CI = 0.95,
sample.size.print = FALSE,
xlab = "Group",
ylab = "CSMF",
ylim = NULL,
title = "CSMF by broader cause categories",
horiz = FALSE,
angle = 60,
err_width = 0.4,
err_size = 0.6,
point_size = 2,
border = "black",
bw = FALSE,
...
)
Arguments
x |
fitted |
grouping |
C by 2 matrix of grouping rule. If set to NULL, make it default. |
type |
type of the plot to make |
order.group |
list of grouped categories. If set to NULL, make it default. |
order.sub |
Specification of the order of sub-populations to plot |
err |
indicator of inclusion of error bars |
CI |
confidence interval for error bars. |
sample.size.print |
Logical indicator for printing also the sample size for each sub-population labels. |
xlab |
Labels for the causes. |
ylab |
Labels for the CSMF values. |
ylim |
Range of y-axis. |
title |
Title of the plot. |
horiz |
Logical indicator indicating if the bars are plotted horizontally. |
angle |
Angle of rotation for the texts on x axis when |
err_width |
Size of the error bars. |
err_size |
Thickness of the error bar lines. |
point_size |
Size of the points. |
border |
The color for the border of the bars. |
bw |
Logical indicator for setting the theme of the plots to be black and white. |
... |
Not used. |
Author(s)
Zehang Li, Tyler McCormick, Sam Clark
Maintainer: Zehang Li <lizehang@uw.edu>
References
Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark Probabilistic cause-of-death assignment using verbal autopsies, Journal of the American Statistical Association (2016), 111(515):1036-1049.
See Also
Examples
## Not run:
data(RandomVA1)
##
## Scenario 1: without sub-population specification
##
fit1<- insilico(RandomVA1, subpop = NULL,
Nsim = 1000, burnin = 500, thin = 10 , seed = 1,
auto.length = FALSE)
# stack bar plot for grouped causes
# the default grouping could be seen from
data(SampleCategory)
stackplot(fit1, type = "dodge", xlab = "")
##
## Scenario 2: with sub-population specification
##
data(RandomVA2)
fit2<- insilico(RandomVA2, subpop = list("sex"),
Nsim = 1000, burnin = 500, thin = 10 , seed = 1,
auto.length = FALSE)
stackplot(fit2, type = "stack", angle = 0)
stackplot(fit2, type = "dodge", angle = 0)
# Change the default grouping by separating TB from HIV
data(SampleCategory)
SampleCategory[c(3, 9), ]
SampleCategory[3, 2] <- "HIV/AIDS"
SampleCategory[9, 2] <- "TB"
stackplot(fit2, type = "stack", grouping = SampleCategory,
sample.size.print = TRUE, angle = 0)
stackplot(fit2, type = "dodge", grouping = SampleCategory,
sample.size.print = TRUE, angle = 0)
# change the order of display for sub-population and cause groups
groups <- c("HIV/AIDS", "TB", "Communicable", "NCD", "External",
"Maternal", "causes specific to infancy")
subpops <- c("Women", "Men")
stackplot(fit2, type = "stack", grouping = SampleCategory,
order.group = groups, order.sub = subpops,
sample.size.print = TRUE, angle = 0)
## End(Not run)