get.indiv {InSilicoVA} | R Documentation |
Get individual COD probabilities from InSilicoVA Model Fits
Description
This function calculates individual probabilities for each death and provide posterior credible intervals for each estimates. The default set up is to calculate the 95
Usage
get.indiv(
object,
data = NULL,
CI = 0.95,
is.aggregate = FALSE,
by = NULL,
is.sample = FALSE,
java_option = "-Xmx1g",
...
)
Arguments
object |
Fitted |
data |
data for the fitted |
CI |
Credible interval for posterior estimates. |
is.aggregate |
logical indicator for constructing aggregated distribution rather than individual distributions. |
by |
list of column names to group by. |
is.sample |
logical indicator for returning the posterior samples of individual probabilities instead of posterior summaries. |
java_option |
Option to initialize java JVM. Default to “-Xmx1g”, which sets the maximum heap size to be 1GB. |
... |
Not used. |
Value
mean |
individual mean COD distribution matrix. |
median |
individual median COD distribution matrix. |
lower |
individual lower bound for each COD probability. |
upper |
individual upper bound for each COD probability. |
Author(s)
Zehang Li, Tyler McCormick, Sam Clark
Maintainer: Zehang Li <lizehang@uw.edu>
References
Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark Probabilistic cause-of-death assignment using verbal autopsies, Journal of the American Statistical Association (2016), 111(515):1036-1049.
See Also
insilico
, updateIndiv
, plot.insilico
Examples
## Not run:
data(RandomVA1)
fit1<- insilico(RandomVA1, subpop = NULL,
Nsim = 1000, burnin = 500, thin = 10 , seed = 1,
auto.length = FALSE)
summary(fit1, id = "d199")
# Calculate aggregated COD distributions
agg.csmf <- get.indiv(data = RandomVA1, fit1, CI = 0.95,
is.aggregate = TRUE, by = NULL)
head(agg.csmf)
agg.by.sex.age <- get.indiv(data = RandomVA1, fit1, CI = 0.95,
is.aggregate = TRUE, by = list("sex", "age"))
head(agg.by.sex.age$mean)
# Obtain individual level P(Y|X) posterior draws (N by C by Nitr array)
prob <- get.indiv(data = RandomVA1, fit1, is.sample = TRUE)
dim(prob)
## End(Not run)