mice.impute.gamlss {ImputeRobust} | R Documentation |
Multiple Imputation with Generalized Additive Models for Location, Scale, and Shape.
Description
Imputes univariate missing data using a generalized model for location, scale and shape.
Usage
mice.impute.gamlss(y, ry, x, family = NO, n.ind.par = 2,
fitted.gam = NULL, gam.mod = list(type = "pb"), EV = TRUE, ...)
mice.impute.gamlssNO(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssBI(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssJSU(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssPO(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssTF(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssGA(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssZIBI(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
mice.impute.gamlssZIP(y, ry, x, fitted.gam = NULL, EV = TRUE, ...)
fit.gamlss(y, ry, x, family = NO, n.ind.par = 2, gam.mod = list(type
= "pb"), ...)
Arguments
y |
Numeric vector with incomplete data. |
ry |
Response pattern of 'y' ('TRUE'=observed, 'FALSE'=missing). |
x |
Design matrix with 'length(y)' rows and 'p' columns containing complete covariates. |
family |
Distribution family to be used by GAMLSS. It defaults to NO but a range of families can be defined by calling the corresponding "gamlssFAMILY" method. |
n.ind.par |
Number of parameters from the distribution family to be individually estimated. |
fitted.gam |
A predefined bootstrap gamlss method returned by
|
gam.mod |
list with the parameters of the GAMLSS imputation model. |
EV |
Logical value to determine whether to correct or not extreme imputed values. This can arise due to too much flexibility of the gamlss model. |
... |
extra arguments for the control of the gamlss fitting function |
Details
Imputation of y
using generalized additive models
for location, scale, and shape. A model is fitted with the
observed part of the data set. Then a bootstrap sample is
generated and used to refit the model and generate imputations.
The function fit.gamlss
handles the fitting and the
bootstrap and returns a method to generated imputations.
Being gamlss a flexible non parametric method, there may be problems with the fitting and imputation depending on the sample size. The imputation functions try to handle anomalies automatically, but results should be still inspected.
Value
Numeric vector with imputed values for missing y
values
Author(s)
Daniel Salfran daniel.salfran@uni-hamburg.de
References
de Jong, R., van Buuren, S. & Spiess, M. (2016) Multiple Imputation of Predictor Variables Using Generalized Additive Models. Communications in Statistics – Simulation and Computation, 45(3), 968–985.
de Jong, Roel. (2012). “Robust Multiple Imputation.” Universität Hamburg. http://ediss.sub.uni-hamburg.de/volltexte/2012/5971/.
Rigby, R. A., and Stasinopoulos, D. M. (2005). Generalized Additive Models for Location, Scale and Shape. Journal of the Royal Statistical Society: Series C (Applied Statistics) 54 (3): 507–54.
Examples
require(lattice)
# Create the imputed data sets
predMat <- matrix(rep(0,25), ncol = 5)
predMat[4,1] <- 1
predMat[4,5] <- 1
predMat[2,1] <- 1
predMat[2,5] <- 1
predMat[2,4] <- 1
predMat[3,1] <- 1
predMat[3,5] <- 1
predMat[3,4] <- 1
predMat[3,2] <- 1
imputed.sets <- mice(sample.data, m = 2,
method = c("", "gamlssPO",
"gamlss", "gamlssBI", ""),
visitSequence = "monotone",
predictorMatrix = predMat,
maxit = 1, seed = 973,
n.cyc = 1, bf.cyc = 1,
cyc = 1)
fit <- with(imputed.sets, lm(y ~ X.1 + X.2 + X.3 + X.4))
summary(pool(fit))
stripplot(imputed.sets)