IM4E {Immigrate} | R Documentation |
IM4E
Description
This function performs IM4E(Iterative Margin-Maximization under Max-Min Entropy) algorithm.
Usage
IM4E(
xx,
yy,
epsilon = 0.01,
sig = 1,
lambda = 1,
max_iter = 10,
removesmall = FALSE
)
Arguments
xx |
model matrix of explanatory variables |
yy |
label vector |
epsilon |
criterion for stopping iteration, default to be 0.01 |
sig |
sigma used in algorithm, default to be 1 |
lambda |
lambda used in algorithm, default to be 1 |
max_iter |
maximum number of iteration |
removesmall |
whether remove features with small weights, default to be FALSE |
Value
w |
weight vector obtained by IM4E algorithm |
iter_num |
number of iteration for convergence |
final_c |
final cost value. Refer to the cost function in reference below for more details |
References
Bei Y, Hong P. Maximizing margin quality and quantity[C]//Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International Workshop on. IEEE, 2015: 1-6.
Examples
data(park)
xx<-park$xx
yy<-park$yy
re<-IM4E(xx,yy)
print(re)
[Package Immigrate version 0.2.1 Index]