sera {IRon} | R Documentation |
Squared Error-Relevance Area (SERA)
Description
Computes an approximation of the area under the curve described by squared error of predictions for a sequence of subsets with increasing relevance
Usage
sera(
trues,
preds,
phi.trues = NULL,
ph = NULL,
pl = FALSE,
m.name = "Model",
step = 0.001,
return.err = FALSE,
norm = FALSE
)
Arguments
trues |
Target values from a test set of a given data set. Should be a vector and have the same size as the variable preds |
preds |
Predicted values given a certain test set of a given data set. Should be a vector and have the same size as the variable preds |
phi.trues |
Relevance of the values in the parameter trues. Use ??phi() for more information. Defaults to NULL |
ph |
The relevance function providing the data points where the pairs of values-relevance are known. Default is NULL |
pl |
Boolean to indicate if an illustration of the curve should be provided. Default is FALSE |
m.name |
Name of the model to be appended in the plot title |
step |
Relevance intervals between 0 (min) and 1 (max). Default 0.001 |
return.err |
Boolean to indicate if the errors at each subset of increasing relevance should be returned. Default is FALSE |
norm |
Normalize the SERA values for internal optimisation only (TRUE/FALSE) |
Value
Value for the area under the relevance-squared error curve (SERA)
Examples
library(IRon)
library(rpart)
if(requireNamespace("rpart")) {
#' data(accel)
form <- acceleration ~ .
ind <- sample(1:nrow(accel),0.75*nrow(accel))
train <- accel[ind,]
test <- accel[-ind,]
ph <- phi.control(accel$acceleration)
m <- rpart::rpart(form, train)
preds <- as.vector(predict(m,test))
trues <- test$acceleration
phi.trues <- phi(test$acceleration,ph)
sera(trues,preds,phi.trues)
sera(trues,preds,phi.trues,pl=TRUE, m.name="Regression Trees")
sera(trues,preds,phi.trues,pl=TRUE, return.err=TRUE)
}