original_par_2GM {IRTest} | R Documentation |
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Description
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Usage
original_par_2GM(
prob = 0.5,
d = 0,
sd_ratio = 1,
overallmean = 0,
overallsd = 1
)
Arguments
prob |
The π=Nn1 parameter of two-component Gaussian mixture distribution, where n1 is the estimated number of examinees belonging to the first Gaussian component and N is the total number of examinees (Li, 2021).
|
d |
The δ=σˉμ2−μ1 parameter of two-component Gaussian mixture distribution,
where μ1 and μ2 are the estimated means of the first and second Gaussian components, respectively.
And σˉ is the overall standard deviation of the latent distribution (Li, 2021).
Without loss of generality, μ2≥μ1 is assumed, thus δ≥0 .
|
sd_ratio |
A numeric value of ζ=σ1σ2 parameter of two-component Gaussian mixture distribution, where σ1 and σ2 are the estimated standard deviations of the first and second Gaussian components, respectively (Li, 2021).
|
overallmean |
A numeric value of μˉ that determines the overall mean of two-component Gaussian mixture distribution.
|
overallsd |
A numeric value of σˉ that determines the overall standard deviation of two-component Gaussian mixture distribution.
|
Details
- Original two-component Gaussian mixture distribution
-
f(x)=π×ϕ(x∣μ1,σ1)+(1−π)×ϕ(x∣μ2,σ2)
, where ϕ
is a Gaussian component.
- Re-parameterized two-component Gaussian mixture distribution
-
f(x)=2GM(x∣π,δ,ζ,μˉ,σˉ)
, where μˉ
is overall mean and σˉ
is overall standard deviation of the distribution.
-
The original parameters retrieved from re-parameterized values
-
1) Mean of the first Gaussian component (m1
).
μ1=−(1−π)δσˉ+μˉ
2) Mean of the second Gaussian component (m2
).
μ2=πδσˉ+μˉ
3) Standard deviation of the first Gaussian component (s1
).
σ12=σˉ2(π+(1−π)ζ21−π(1−π)δ2)
4) Standard deviation of the second Gaussian component (s2
).
σ22=σˉ2(ζ21π+(1−π)1−π(1−π)δ2)=ζ2σ12
Value
This function returns a vector of length 4: c(m1,m2,s1,s2)
.
m1 |
The location parameter (mean) of the first Gaussian component.
|
m2 |
The location parameter (mean) of the second Gaussian component.
|
s1 |
The scale parameter (standard deviation) of the first Gaussian component.
|
s2 |
The scale parameter (standard deviation) of the second Gaussian component.
|
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
[Package
IRTest version 2.0.0
Index]