original_par_2GM {IRTest}R Documentation

Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values

Description

Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values

Usage

original_par_2GM(
  prob = 0.5,
  d = 0,
  sd_ratio = 1,
  overallmean = 0,
  overallsd = 1
)

Arguments

prob

The π=n1N\pi = \frac{n_1}{N} parameter of two-component Gaussian mixture distribution, where n1n_1 is the estimated number of examinees belonging to the first Gaussian component and NN is the total number of examinees (Li, 2021).

d

The δ=μ2μ1σˉ\delta = \frac{\mu_2 - \mu_1}{\bar{\sigma}} parameter of two-component Gaussian mixture distribution, where μ1\mu_1 and μ2\mu_2 are the estimated means of the first and second Gaussian components, respectively. And σˉ\bar{\sigma} is the overall standard deviation of the latent distribution (Li, 2021). Without loss of generality, μ2μ1\mu_2 \ge \mu_1 is assumed, thus δ0\delta \ge 0.

sd_ratio

A numeric value of ζ=σ2σ1\zeta = \frac{\sigma_2}{\sigma_1} parameter of two-component Gaussian mixture distribution, where σ1\sigma_1 and σ2\sigma_2 are the estimated standard deviations of the first and second Gaussian components, respectively (Li, 2021).

overallmean

A numeric value of μˉ\bar{\mu} that determines the overall mean of two-component Gaussian mixture distribution.

overallsd

A numeric value of σˉ\bar{\sigma} that determines the overall standard deviation of two-component Gaussian mixture distribution.

Details

Original two-component Gaussian mixture distribution

f(x)=π×ϕ(xμ1,σ1)+(1π)×ϕ(xμ2,σ2)f(x)=\pi\times \phi(x | \mu_1, \sigma_1)+(1-\pi)\times \phi(x | \mu_2, \sigma_2)

, where ϕ\phi is a Gaussian component.

Re-parameterized two-component Gaussian mixture distribution

f(x)=2GM(xπ,δ,ζ,μˉ,σˉ)f(x)=2GM(x|\pi, \delta, \zeta, \bar{\mu}, \bar{\sigma})

, where μˉ\bar{\mu} is overall mean and σˉ\bar{\sigma} is overall standard deviation of the distribution.

The original parameters retrieved from re-parameterized values

1) Mean of the first Gaussian component (m1).

μ1=(1π)δσˉ+μˉ\mu_1=-(1-\pi)\delta\bar{\sigma}+\bar{\mu}

2) Mean of the second Gaussian component (m2).

μ2=πδσˉ+μˉ\mu_2=\pi\delta\bar{\sigma}+\bar{\mu}

3) Standard deviation of the first Gaussian component (s1).

σ12=σˉ2(1π(1π)δ2π+(1π)ζ2)\sigma_1^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\pi+(1-\pi)\zeta^2}\right)

4) Standard deviation of the second Gaussian component (s2).

σ22=σˉ2(1π(1π)δ21ζ2π+(1π))=ζ2σ12\sigma_2^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\frac{1}{\zeta^2}\pi+(1-\pi)}\right)=\zeta^2\sigma_1^2

Value

This function returns a vector of length 4: c(m1,m2,s1,s2).

m1

The location parameter (mean) of the first Gaussian component.

m2

The location parameter (mean) of the second Gaussian component.

s1

The scale parameter (standard deviation) of the first Gaussian component.

s2

The scale parameter (standard deviation) of the second Gaussian component.

Author(s)

Seewoo Li cu@yonsei.ac.kr

References

Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.


[Package IRTest version 2.0.0 Index]