original_par_2GM {IRTest} | R Documentation |
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Description
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Usage
original_par_2GM(
prob = 0.5,
d = 0,
sd_ratio = 1,
overallmean = 0,
overallsd = 1
)
Arguments
prob |
The |
d |
The |
sd_ratio |
A numeric value of |
overallmean |
A numeric value of |
overallsd |
A numeric value of |
Details
- Original two-component Gaussian mixture distribution
-
f(x)=\pi\times \phi(x | \mu_1, \sigma_1)+(1-\pi)\times \phi(x | \mu_2, \sigma_2)
, where
\phi
is a Gaussian component. - Re-parameterized two-component Gaussian mixture distribution
-
f(x)=2GM(x|\pi, \delta, \zeta, \bar{\mu}, \bar{\sigma})
, where
\bar{\mu}
is overall mean and\bar{\sigma}
is overall standard deviation of the distribution. - The original parameters retrieved from re-parameterized values
-
1) Mean of the first Gaussian component (
m1
).\mu_1=-(1-\pi)\delta\bar{\sigma}+\bar{\mu}
2) Mean of the second Gaussian component (
m2
).\mu_2=\pi\delta\bar{\sigma}+\bar{\mu}
3) Standard deviation of the first Gaussian component (
s1
).\sigma_1^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\pi+(1-\pi)\zeta^2}\right)
4) Standard deviation of the second Gaussian component (
s2
).\sigma_2^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\frac{1}{\zeta^2}\pi+(1-\pi)}\right)=\zeta^2\sigma_1^2
Value
This function returns a vector of length 4: c(m1,m2,s1,s2)
.
m1 |
The location parameter (mean) of the first Gaussian component. |
m2 |
The location parameter (mean) of the second Gaussian component. |
s1 |
The scale parameter (standard deviation) of the first Gaussian component. |
s2 |
The scale parameter (standard deviation) of the second Gaussian component. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.