| parinfo {IPEC} | R Documentation |
Detailed Information of Estimated Model Parameters
Description
Provides the estimates, standard errors, confidence intervals, Jacobian matrix, and the covariance matrix of model parameters.
Usage
parinfo(object, x, CI = 0.95, method = "Richardson",
method.args = list(eps = 1e-04, d = 0.11,
zero.tol = sqrt(.Machine$double.eps/7e-07), r = 6,
v = 2, show.details = FALSE), side = NULL)
Arguments
object |
A fitted model object for which there exist the model expression( |
x |
A vector or a matrix of observations of independent variable(s) |
CI |
The confidence level(s) of the required interval(s) |
method |
It is the same as the input argument of |
method.args |
It is the same as the input argument of |
side |
It is the same as the input argument of |
Details
The object argument cannot be a list. It is a fitted model object from using the fitIPEC function.
Value
D |
The Jacobian matrix of model parameters at all the |
partab |
The estimates, standard errors and confidence intervals of model parameters |
covmat |
The covariance matrix of model parameters |
Note
When there are sample.size and n in object at the same time, the default of
the sample size is sample.size, which is superior to n.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Peter M. Ridland p.ridland@unimelb.edu.au, David A. Ratkowsky d.ratkowsky@utas.edu.au, Yang Li yangli@fau.edu.
References
Bates, D.M and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York. doi:10.1002/9780470316757
Ratkowsky, D.A. (1983) Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York.
Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.
See Also
biasIPEC, confcurves, curvIPEC, skewIPEC,
hessian in package numDeriv,
jacobian in package numDeriv
Examples
#### Example 1 ###################################################################################
# Weight of cut grass data (Pattinson 1981)
# References:
# Clarke, G.P.Y. (1987) Approximate confidence limits for a parameter function in nonlinear
# regression. J. Am. Stat. Assoc. 82, 221-230.
# Gebremariam, B. (2014) Is nonlinear regression throwing you a curve?
# New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014.
# http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
# Pattinson, N.B. (1981) Dry Matter Intake: An Estimate of the Animal
# Response to Herbage on Offer. unpublished M.Sc. thesis, University
# of Natal, Pietermaritzburg, South Africa, Department of Grassland Science.
# 'x4' is the vector of weeks after commencement of grazing in a pasture
# 'y4' is the vector of weight of cut grass from 10 randomly sited quadrants
x4 <- 1:13
y4 <- c(3.183, 3.059, 2.871, 2.622, 2.541, 2.184,
2.110, 2.075, 2.018, 1.903, 1.770, 1.762, 1.550)
# Define the first case of Mitscherlich equation
MitA <- function(P1, x){
P1[3] + P1[2]*exp(P1[1]*x)
}
# Define the second case of Mitscherlich equation
MitB <- function(P2, x){
log( P2[3] ) + exp(P2[2] + P2[1]*x)
}
# Define the third case of Mitscherlich equation
MitC <- function(P3, x, x1=1, x2=13){
theta1 <- P3[1]
beta2 <- P3[2]
beta3 <- P3[3]
theta2 <- (beta3 - beta2)/(exp(theta1*x2)-exp(theta1*x1))
theta3 <- beta2/(1-exp(theta1*(x1-x2))) - beta3/(exp(theta1*(x2-x1))-1)
theta3 + theta2*exp(theta1*x)
}
ini.val3 <- c(-0.1, 2.5, 1)
r1 <- fitIPEC( MitA, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
parA <- r1$par
parA
result1 <- parinfo(r1, x=x4, CI=0.95)
result1
ini.val4 <- c(-0.10, 0.90, 2.5)
R0 <- fitIPEC( MitB, x=x4, y=y4, ini.val=ini.val4, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
parB <- R0$par
parB
result2 <- parinfo(R0, x=x4, CI=0.95)
result2
ini.val6 <- c(-0.15, 2.52, 1.09)
RES0 <- fitIPEC( MitC, x=x4, y=y4, ini.val=ini.val6, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(trace=FALSE,
reltol=1e-20, maxit=50000) )
parC <- RES0$par
parC
result3 <- parinfo(RES0, x=x4, CI=0.95)
result3
##################################################################################################
#### Example 2 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References:
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
# 52, 391-396.
data(isom)
Y <- isom[,1]
X <- isom[,2:4]
# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)
isom.fun <- function(theta, x){
x1 <- x[,1]
x2 <- x[,2]
x3 <- x[,3]
theta1 <- theta[1]
theta2 <- theta[2]
theta3 <- theta[3]
theta4 <- theta[4]
theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}
ini.val8 <- c(35, 0.1, 0.05, 0.2)
cons1 <- fitIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
par8 <- cons1$par
result2 <- parinfo(cons1, x=X, CI=0.95)
result2
##################################################################################################
graphics.off()