parinfo {IPEC} | R Documentation |
Detailed Information of Estimated Model Parameters
Description
Provides the estimates, standard errors, confidence intervals, Jacobian matrix, and the covariance matrix of model parameters.
Usage
parinfo(object, x, CI = 0.95, method = "Richardson",
method.args = list(eps = 1e-04, d = 0.11,
zero.tol = sqrt(.Machine$double.eps/7e-07), r = 6,
v = 2, show.details = FALSE), side = NULL)
Arguments
object |
A fitted model object for which there exist the model expression( |
x |
A vector or a matrix of observations of independent variable(s) |
CI |
The confidence level(s) of the required interval(s) |
method |
It is the same as the input argument of |
method.args |
It is the same as the input argument of |
side |
It is the same as the input argument of |
Details
The object
argument cannot be a list. It is a fitted model object from using the fitIPEC
function.
Value
D |
The Jacobian matrix of model parameters at all the |
partab |
The estimates, standard errors and confidence intervals of model parameters |
covmat |
The covariance matrix of model parameters |
Note
When there are sample.size
and n
in object
at the same time, the default of
the sample size is sample.size
, which is superior to n
.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Peter M. Ridland p.ridland@unimelb.edu.au, David A. Ratkowsky d.ratkowsky@utas.edu.au, Yang Li yangli@fau.edu.
References
Bates, D.M and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applications. Wiley, New York. doi:10.1002/9780470316757
Ratkowsky, D.A. (1983) Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker, New York.
Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.
See Also
biasIPEC
, confcurves
, curvIPEC
, skewIPEC
,
hessian
in package numDeriv,
jacobian
in package numDeriv
Examples
#### Example 1 ###################################################################################
# Weight of cut grass data (Pattinson 1981)
# References:
# Clarke, G.P.Y. (1987) Approximate confidence limits for a parameter function in nonlinear
# regression. J. Am. Stat. Assoc. 82, 221-230.
# Gebremariam, B. (2014) Is nonlinear regression throwing you a curve?
# New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014.
# http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
# Pattinson, N.B. (1981) Dry Matter Intake: An Estimate of the Animal
# Response to Herbage on Offer. unpublished M.Sc. thesis, University
# of Natal, Pietermaritzburg, South Africa, Department of Grassland Science.
# 'x4' is the vector of weeks after commencement of grazing in a pasture
# 'y4' is the vector of weight of cut grass from 10 randomly sited quadrants
x4 <- 1:13
y4 <- c(3.183, 3.059, 2.871, 2.622, 2.541, 2.184,
2.110, 2.075, 2.018, 1.903, 1.770, 1.762, 1.550)
# Define the first case of Mitscherlich equation
MitA <- function(P1, x){
P1[3] + P1[2]*exp(P1[1]*x)
}
# Define the second case of Mitscherlich equation
MitB <- function(P2, x){
log( P2[3] ) + exp(P2[2] + P2[1]*x)
}
# Define the third case of Mitscherlich equation
MitC <- function(P3, x, x1=1, x2=13){
theta1 <- P3[1]
beta2 <- P3[2]
beta3 <- P3[3]
theta2 <- (beta3 - beta2)/(exp(theta1*x2)-exp(theta1*x1))
theta3 <- beta2/(1-exp(theta1*(x1-x2))) - beta3/(exp(theta1*(x2-x1))-1)
theta3 + theta2*exp(theta1*x)
}
ini.val3 <- c(-0.1, 2.5, 1)
r1 <- fitIPEC( MitA, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
parA <- r1$par
parA
result1 <- parinfo(r1, x=x4, CI=0.95)
result1
ini.val4 <- c(-0.10, 0.90, 2.5)
R0 <- fitIPEC( MitB, x=x4, y=y4, ini.val=ini.val4, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
parB <- R0$par
parB
result2 <- parinfo(R0, x=x4, CI=0.95)
result2
ini.val6 <- c(-0.15, 2.52, 1.09)
RES0 <- fitIPEC( MitC, x=x4, y=y4, ini.val=ini.val6, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(trace=FALSE,
reltol=1e-20, maxit=50000) )
parC <- RES0$par
parC
result3 <- parinfo(RES0, x=x4, CI=0.95)
result3
##################################################################################################
#### Example 2 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References:
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
# 52, 391-396.
data(isom)
Y <- isom[,1]
X <- isom[,2:4]
# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)
isom.fun <- function(theta, x){
x1 <- x[,1]
x2 <- x[,2]
x3 <- x[,3]
theta1 <- theta[1]
theta2 <- theta[2]
theta3 <- theta[3]
theta4 <- theta[4]
theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}
ini.val8 <- c(35, 0.1, 0.05, 0.2)
cons1 <- fitIPEC( isom.fun, x=X, y=Y, ini.val=ini.val8, control=list(
trace=FALSE, reltol=1e-20, maxit=50000) )
par8 <- cons1$par
result2 <- parinfo(cons1, x=X, CI=0.95)
result2
##################################################################################################
graphics.off()