bootIPEC {IPEC}R Documentation

Bootstrap Function for Nonlinear Regression

Description

Generates the density distributions, standard errors, confidence intervals, covariance matrices and correlation matrices of parameters based on bootstrap replications.

Usage

bootIPEC( expr, x, y, ini.val, weights = NULL, control = list(), 
          nboot = 200, CI = 0.95, fig.opt = TRUE, fold = 3.5, 
          unique.num = 2, prog.opt = TRUE )

Arguments

expr

A given parametric model

x

A vector or matrix of observations of independent variable(s)

y

A vector of observations of response variable

ini.val

A vector or list of initial values of model parameters

weights

An optional vector of weights to be used in the fitting process. weights should be NULL or a numeric vector. If non-NULL, weighted least squares is used with weights weights; otherwise ordinary least squares is used.

control

A list of control parameters for using the optim function in package stats

nboot

The number of bootstrap replications

CI

The confidence level(s) of the required interval(s)

fig.opt

An option of drawing figures of the distributions of bootstrap values of parameters and figures of pairwise comparisons of bootstrap values

fold

A parameter removing the extreme bootstrap values of parameters

unique.num

The least number of sampled non-overlapping data points for carrying out a bootstrap nonlinear regression

prog.opt

An option of showing the running progress of bootstrap

Details

ini.val can be a vector or a list that has saved initial values for model parameters,

e.g. y = beta0 + beta1 * x + beta2 * x^2,

ini.val = list(beta0=seq(5, 15, len=2), beta1=seq(0.1, 1, len=9), beta2=seq(0.01, 0.05, len=5)), which is similar to the usage of the input argument of start of nls in package stats.

In the weights argument option, the default is weights = NULL. In that case, ordinary least squares is used. The residual sum of squares (RSS) between the observed and predicted y values is minimized to estimate a model's parameters, i.e.,

\mbox{RSS} = \sum_{i=1}^{n}\left(y_i-\hat{y}_i\right)^{2}

where y_i and \hat{y}_i represent the observed and predicted y values, respectively; and n represents the sample size. If weights is a numeric vector, the weighted residual sum of squares is minimized, i.e.,

\mbox{RSS} = \sum_{i=1}^{n}w_i\left(y_i-\hat{y}_i\right)^{2}

where w_i is the i elements of weights.

CI determines the width of confidence intervals.

fold is used to delete the data whose differences from the median exceed a certain fold of the difference between 3/4 and 1/4 quantiles of the bootstrap values of a model parameter.

The default of unique.num is 2. That is, at least two non-overlapping data points randomly sampled from \left(x, y\right) are needed for carrying out a bootstrap nonlinear regression.

Value

M

The matrix saving the fitted results of all nboot bootstrap values of model parameters and goodness of fit

perc.ci.mat

The matrix saving the estimate, standard error, median, mean, and the calculated lower and upper limits of confidence interval based on the bootstrap percentile method

bca.ci.mat

The matrix saving the estimate, standard error, median, mean, and the calculated lower and upper limits of confidence interval based on the bootstrap BC_a method

covar.mat

The covariance matrix of parameters based on the bootstrap values when nboot > 1

cor.mat

The correlation matrix of parameters based on the bootstrap values when nboot > 1

Note

To obtain reliable confidence intervals of model parameters, more than 2000 bootstrap replications are recommended; whereas to obtain a reliable standard error of the estimate of a parameter, more than 30 bootstrap replications are sufficient (Efron and Tibshirani 1993). bca.ci.mat is recommended to show better confidence intervals of parameters than those in perc.ci.mat.

The outputs of model parameters will all be represented by \theta_i, i from 1 to p, where p represents the number of model parameters. The letters of model parameters defined by users such as \beta_i will be automatically replaced by \theta_i.

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Peter M. Ridland p.ridland@unimelb.edu.au, David A. Ratkowsky d.ratkowsky@utas.edu.au, Yang Li yangli@fau.edu.

References

Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap. Chapman and Hall (CRC), New York. doi:10.2307/2532810

Sandhu, H.S., Shi, P., Kuang, X., Xue, F. and Ge, F. (2011) Applications of the bootstrap to insect physiology. Fla. Entomol. 94, 1036-1041. doi:10.1653/024.094.0442

See Also

fitIPEC

Examples

#### Example 1 #################################################################################
graphics.off()
# The velocity of the reaction (counts/min^2) under different substrate concentrations 
#   in parts per million (ppm) (Page 269 of Bates and Watts 1988)

x1 <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56, 1.10, 1.10)
y1 <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)

# Define the Michaelis-Menten (MM) model
MM <- function(theta, x){
    theta[1]*x / ( theta[2] + x )    
}


  set.seed(123)
  res4 <- bootIPEC( MM, x=x1, y=y1, ini.val=c(200, 0.05), 
                    control=list(reltol=1e-20, maxit=40000), nboot=2000, CI=0.95, 
                    fig.opt=TRUE )
  res4
  set.seed(NULL)

#################################################################################################


#### Example 2 ##################################################################################
graphics.off()
# Development data of female pupae of cotton bollworm (Wu et al. 2009)
# References:
#   Ratkowsky, D.A. and Reddy, G.V.P. (2017) Empirical model with excellent statistical 
#       properties for describing temperature-dependent developmental rates of insects  
#       and mites. Ann. Entomol. Soc. Am. 110, 302-309.
#   Wu, K., Gong, P. and Ruan, Y. (2009) Estimating developmental rates of 
#       Helicoverpa armigera (Lepidoptera: Noctuidae) pupae at constant and
#       alternating temperature by nonlinear models. Acta Entomol. Sin. 52, 640-650.

# 'x2' is the vector of temperature (in degrees Celsius)
# 'D2' is the vector of developmental duration (in d)
# 'y2' is the vector of the square root of developmental rate (in 1/d)

x2 <- seq(15, 37, by=1)
D2 <- c(41.24,37.16,32.47,26.22,22.71,19.01,16.79,15.63,14.27,12.48,
       11.3,10.56,9.69,9.14,8.24,8.02,7.43,7.27,7.35,7.49,7.63,7.9,10.03)
y2 <- 1/D2
y2 <- sqrt( y2 )
ini.val1 <- c(0.14, 30, 10, 40)

# Define the square root function of the Lobry-Rosso-Flandrois (LRF) model
sqrt.LRF <- function(P, x){
  ropt <- P[1]
  Topt <- P[2]
  Tmin <- P[3]
  Tmax <- P[4]
  fun0 <- function(z){
    z[z < Tmin] <- Tmin
    z[z > Tmax] <- Tmax
    return(z)
  }
  x <- fun0(x)
  if (Tmin >= Tmax | ropt <= 0 | Topt <= Tmin | Topt >= Tmax) 
    temp <- Inf
  if (Tmax > Tmin & ropt > 0 & Topt > Tmin & Topt < Tmax){
    temp <- sqrt( ropt*(x-Tmax)*(x-Tmin)^2/((Topt-Tmin)*((Topt-Tmin
      )*(x-Topt)-(Topt-Tmax)*(Topt+Tmin-2*x))) )  
  }
  return( temp )
}

myfun <- sqrt.LRF

  set.seed(123)
  resu4 <- bootIPEC( myfun, x=x2, y=y2, ini.val=ini.val1, 
                     nboot=2000, CI=0.95, fig.opt=TRUE )
  resu4
  set.seed(NULL)

#################################################################################################


#### Example 3 ##################################################################################
graphics.off()
# Height growth data of four species of bamboo (Gramineae: Bambusoideae)
# Reference(s):
# Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S. and  
#     Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. 
#     Ecol. Model. 349, 1-10.

data(shoots)
# Choose a species
# 1: Phyllostachys iridescens; 2: Phyllostachys mannii; 
# 3: Pleioblastus maculatus; 4: Sinobambusa tootsik.
# 'x3' is the vector of the observation times from a specific starting time of growth
# 'y3' is the vector of the aboveground height values of bamboo shoots at 'x3' 

ind <- 4
x3  <- shoots$x[shoots$Code == ind]
y3  <- shoots$y[shoots$Code == ind] 

# Define the beta sigmoid model (bsm)
bsm <- function(P, x){
  P  <- cbind(P)
  if(length(P) !=4 ) {stop(" The number of parameters should be 4!")}
  ropt <- P[1]
  topt <- P[2]
  tmin <- P[3]
  tmax <- P[4]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   
  return(ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-
         2*tmax)*( (x-tmin)/(topt-tmin) )^((topt-tmin)/(tmax-topt)))   
}

# Define the simplified beta sigmoid model (simp.bsm)
simp.bsm <- function(P, x, tmin=0){
  P  <- cbind(P)  
  ropt  <- P[1]
  topt  <- P[2]
  tmax  <- P[3]
  tailor.fun <- function(x){
    x[x < tmin] <- tmin
    x[x > tmax] <- tmax
    return(x)
  }
  x <- tailor.fun(x)   
  return(ropt*(x-tmin)*(x-2*tmax+topt)/(topt+tmin-
         2*tmax)*((x-tmin)/(topt-tmin) )^((topt-tmin)/(tmax-topt)))   
}

# For the original beta sigmoid model
ini.val2 <- c(40, 30, 5, 50)
xlab2    <- "Time (d)"
ylab2    <- "Height (cm)"


  set.seed(123)
  re4 <- bootIPEC( bsm, x=x3, y=y3, ini.val=ini.val2,    
                   control=list(trace=FALSE, reltol=1e-20, maxit=50000),
                   nboot=2000, CI=0.95, fig.opt=TRUE, fold=10 )
  re4
  set.seed(NULL)


# For the simplified beta sigmoid model (in comparison with the original beta sigmoid model)
ini.val7 <- c(40, 30, 50)


  set.seed(123)
  RESU4 <- bootIPEC( simp.bsm, x=x3, y=y3, ini.val=ini.val7,   
                     control=list(trace=FALSE, reltol=1e-20, maxit=50000),
                     nboot=2000, CI=0.95, fig.opt=TRUE, fold=10 )
  RESU4
  set.seed(NULL)

#################################################################################################


#### Example 4 ##################################################################################
graphics.off()
# Weight of cut grass data (Pattinson 1981)
# References:
#   Clarke, G.P.Y. (1987) Approximate confidence limits for a parameter function in nonlinear 
#       regression. J. Am. Stat. Assoc. 82, 221-230.
#   Gebremariam, B. (2014) Is nonlinear regression throwing you a curve? 
#       New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014. 
#       http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
#   Pattinson, N.B. (1981) Dry Matter Intake: An Estimate of the Animal
#       Response to Herbage on Offer. unpublished M.Sc. thesis, University
#       of Natal, Pietermaritzburg, South Africa, Department of Grassland Science.

# 'x4' is the vector of weeks after commencement of grazing in a pasture
# 'y4' is the vector of weight of cut grass from 10 randomly sited quadrants

x4 <- 1:13
y4 <- c( 3.183, 3.059, 2.871, 2.622, 2.541, 2.184, 
         2.110, 2.075, 2.018, 1.903, 1.770, 1.762, 1.550 )

# Define the first case of Mitscherlich equation
MitA <- function(P1, x){
    P1[3] + P1[2]*exp(P1[1]*x)
}

# Define the second case of Mitscherlich equation
MitB <- function(P2, x){
    log( P2[3] ) + exp(P2[2] + P2[1]*x)
}

# Define the third case of Mitscherlich equation
MitC <- function(P3, x, x1=1, x2=13){
    theta1 <- P3[1]
    beta2  <- P3[2]
    beta3  <- P3[3]
    theta2 <- (beta3 - beta2)/(exp(theta1*x2)-exp(theta1*x1))
    theta3 <- beta2/(1-exp(theta1*(x1-x2))) - beta3/(exp(theta1*(x2-x1))-1)
    theta3 + theta2*exp(theta1*x)
}


  set.seed(123)
  ini.val3 <- c(-0.1, 2.5, 1.0)
  r4       <- bootIPEC( MitA, x=x4, y=y4, ini.val=ini.val3,    
                        nboot=2000, CI=0.95, fig.opt=TRUE )
  r4

  ini.val4 <- c(exp(-0.1), log(2.5), 1)
  R4       <- bootIPEC( MitB, x=x4, y=y4, ini.val=ini.val4, 
                        nboot=2000, CI=0.95, fig.opt=TRUE )
  R4

  # ini.val6 <- c(-0.15, 2.52, 1.09)
  iv.list2 <- list(seq(-2, -0.05, len=5), seq(1, 4, len=8), seq(0.05, 3, by=0.5))
  RES0 <- fitIPEC( MitC, x=x4, y=y4, ini.val=iv.list2,    
                   control=list(trace=FALSE, reltol=1e-10, maxit=5000) )
  RES0$par
  RES4 <- bootIPEC( MitC, x=x4, y=y4, ini.val=iv.list2, 
                    control=list(trace=FALSE, reltol=1e-10, maxit=5000), 
                    nboot=5000, CI=0.95, fig.opt=TRUE, fold=3.5, unique.num=2 )
  RES4
  set.seed(NULL)

#################################################################################################

[Package IPEC version 1.1.0 Index]