IOH_random_local_search {IOHexperimenter} | R Documentation |
IOHexperimenter-based wrapper
Description
For easier use with the IOHexperimenter
The simplest stochastic optimization algorithm for discrete problems. A randomly chosen position in the solution vector is perturbated in each iteration. Only improvements are accepted after perturbation.
Usage
IOH_random_local_search(IOHproblem, budget = NULL)
random_local_search(dimension, obj_func, target_hit = function() {
FALSE }, budget = NULL)
Arguments
IOHproblem |
An IOHproblem object |
budget |
integer, maximal allowable number of function evaluations |
dimension |
Dimension of search space |
obj_func |
The evaluation function |
target_hit |
Optional, function which enables early stopping if a target value is reached |
Examples
benchmark_algorithm(IOH_random_local_search, data.dir = NULL)
[Package IOHexperimenter version 0.1.4 Index]