model_selection {IMIX} | R Documentation |
Model Selection
Description
Model selection for sub-model outputs in IMIX, this step is to calculate the AIC or BIC values for one model
Usage
model_selection(
loglik,
n,
g = 4,
d = 2,
modelname = c("IMIX_ind", "IMIX_ind_unrestrict", "IMIX_cor_twostep", "IMIX_cor",
"IMIX_cor_restrict")
)
Arguments
loglik |
Full log likelihood, result output from IMIX or a sub model in IMIX: 'Full MaxLogLik final' |
n |
Total number of genes |
g |
Number of components |
d |
Number of data types |
modelname |
The model name, default is IMIX_ind |
Value
AIC/BIC values of the target model
References
Ziqiao Wang and Peng Wei. 2020. “IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration.” Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.
Examples
# First load the data
data("data_p")
# Specify the initial values
mu_input <- c(0,3,0,3)
sigma_input <- rep(1,4)
p_input <- rep(0.5,4)
# Fit the IMIX model
test1 <- IMIX(data_input = data_p,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input,
p_ini = p_input,alpha = 0.1,model_selection_method = "AIC")
# Calculate the AIC and BIC values for IMIX_ind with two data types and four components
model_selection(test1$IMIX_ind$`Full MaxLogLik final`,
n=dim(test1$IMIX_ind$`posterior prob`)[1],g=4,d=2, "IMIX_ind")
[Package IMIX version 1.1.5 Index]