LossSource {IIProductionUnknown} | R Documentation |
Obtaining indices associated with sources of loss
Description
These functions allow to calculate the total n of the L.S. (n),
R.P., ks, c, ds, n.I.I., S.n.I.I., and percentage of I.I. (P.I.I.) by each L.S..
Equations:
R.P. = Damage or defoliation
n=total n per sample
k.s.= R.P./n
c = SUM of occurrence of L.S. on the samples, where, absence = 0 or presence = 1.
ds = 1 - P of the chi-square test of L.S. on the samples.
n.I.I.=ks x c x ds
S.n.I.I. = sum of all n.I.I.
Percentage of I.I. (P.I.I.)=(n.I.I. of each L.S./sum of all n.I.I.)*100
Usage
LossSource(DataLoss,DataResult,Cols=c(1,3,5),verbose)
Arguments
DataLoss |
It is a data frame or matrix object containing data from loss sources. Sources of loss refers to the number of individuals per observation that cause damage to the system. |
DataResult |
Matrix or data frame with loss sources. Solution sources refers to the number of individuals per observation that cause a reduction in the sources of loss in the system. |
Cols |
Most important data loss columns. |
verbose |
Logical value (TRUE/FALSE). TRUE displays the results of the analysis. |
Value
The function returns the Percentage of Importance Index-Production Unknown and estimates of variables used in its construction.
Author(s)
Germano Leao Demolin-Leite (Instituto de Ciencias Agrarias da UFMG)
Alcinei Mistico Azevedo (Instituto de Ciencias Agrarias da UFMG)
See Also
EffectivenessOfSolution
, SolutionSource
Examples
data("DataLossSource")
ChisqTest_Distribution(DataLossSource)
data("DataSolutionSource")
ChisqTest_Distribution(DataSolutionSource)
data("DataDefoliation")
data("DataDamage")
DataResult<-cbind(DataDefoliation,DataDamage$D.L.S.2,DataDefoliation,
DataDamage$D.L.S.4,DataDefoliation)
ResultLossSource<-LossSource(DataLoss = DataLossSource,DataResult =DataResult,
Cols=c(1,3,5),verbose=TRUE)
EOS<-EffectivenessOfSolution(DataLossSource =DataLossSource,
DataSolutionSource =DataSolutionSource,
ResultLossSource = ResultLossSource)
EOS
#Put: y and y
# ID=SelectEffectivenessOfSolution(EOS)
ID<-c(FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE)
ResultSolutionSource<-SolutionSource(SolutionData =DataSolutionSource,Production =DataResult,
EffectivenessOfSolution =EOS ,Id = ID,Verbose = TRUE )
ResultSolutionSource
# Put: y,n,y,n,y,n and y
# ReductionAbundance(ResultSolutionSource,ResultLossSource,
# EffectivenessOfSolution=EOS)
###################################################
EOSDamage<-EffectivenessOfSolution(DataLossSource =DataDamage,
DataSolutionSource =DataSolutionSource,
ResultLossSource = NULL)
EOSDamage
# Put: y, n and y
#ReductionDamage(ResultSolutionSource,LossSource=DataDamage,
# EffectivenessOfSolution=EOSDamage)