mloglik0 {IHSEP}R Documentation

Minus loglikelihood of an IHSEP model

Description

Calculates the minus loglikelihood of an IHSEP model with given baseline inensity function ν\nu and excitation function gg for event times jtms on interval [0,TT][0,TT].

Usage

mloglik0(jtms, TT = max(jtms), nu, g,
         Ig=function(x)sapply(x,function(y)integrate(g,0,y)$value))

Arguments

jtms

A numeric vector, with values sorted in ascending order. Jump times to fit the inhomogeneous self-exciting point process model on.

TT

A scalar. The censoring time, or the terminal time for observation. Should be (slightly) greater than the maximum of jtms.

nu

A (vectorized) function. The baseline intensity function.

g

A (vectorized) function. The excitation function.

Ig

A (vectorized) function. Its value at t gives the integral of the excitation function from 0 to t.

Value

The value of the negative log-liklihood.

Author(s)

Feng Chen <feng.chen@unsw.edu.au>

Examples

## simulated data of an IHSEP on [0,1] with baseline intensity function
## nu(t)=200*(2+cos(2*pi*t)) and excitation function
## g(t)=8*exp(-16*t)
data(asep)

## get the birth times of all generations and sort in ascending order 
tms <- sort(unlist(asep))
## calculate the minus loglikelihood of an SEPP with the true parameters 
mloglik0(tms,TT=1,nu=function(x)200*(2+cos(2*pi*x)),
          g=function(x)8*exp(-16*x),Ig=function(x)8/16*(1-exp(-16*x)))
## calculate the MLE for the parameter assuming known parametric forms
## of the baseline intensity and excitation functions  
## Not run: 
system.time(est <- optim(c(400,200,2*pi,8,16),
                         function(p){
                           mloglik0(jtms=tms,TT=1,
                                     nu=function(x)p[1]+p[2]*cos(p[3]*x),
                                     g=function(x)p[4]*exp(-p[5]*x),
                                     Ig=function(x)p[4]/p[5]*(1-exp(-p[5]*x)))
                         },
                         hessian=TRUE,control=list(maxit=5000,trace=TRUE))
            )
## point estimate by MLE
est$par
## standard error estimates:
diag(solve(est$hessian))^0.5

## End(Not run)

[Package IHSEP version 0.3.1 Index]