AutoA {IETD} | R Documentation |
Autocorrelation analysis
Description
This function provides the required figure (an autocorrelogram) to define the inter-event time definition (IETD) based on the autocorrelation analysis.
Usage
AutoA(Time_series,MaxLag,CL,xlabel,ylabel)
Arguments
Time_series |
A dataframe. The first column contains the time and day of a rainfall pulse and the second one the depth of rainfall in each time step. The date must be as POSIXct class. |
MaxLag |
The maximum lag time to be analyzed (in hours). Default value 24. |
CL |
The confidence level of the autocorrelation function (ACF)(in percentage). Default value 95%. |
xlabel |
Label of the x-axis of the autocorrelogram. |
ylabel |
Label of the y-axis of the autocorrelogram. |
Details
IETD is here defined as the lag time where the autocorrelation coefficient of
rain pulses, i.e., the autocorrelation function(ACF), converges to zero (Joo et al. 2014; Adams and Papa 2000). The
analyst uses an autocorrelogram to define that value within a specific level of tolerance. This function is
based on the function acf
of the stats
package.
Value
A list with a figure of lag time (in hours) vs ACF, i.e., an autocorrelogram, and a dataframe with its values.
Note
To review the concept of IETD, go to the details of drawre
function.
Author(s)
Luis F. Duque <lfduquey@gmail.com> <l.f.duque-yaguache2@newcastle.ac.uk>
References
Adams BJ, Papa F (2000).
Urban Storm water Management Planning with Analytical Probabilistic Models.
John Wiley and Sons, New York, NY.
ISBN 0-471-35641-7.
Joo J, Lee J, Kim JH, Jun H, Jo D (2014).
“Inter-event time definition setting procedure for urban drainage systems.”
Water (Switzerland).
ISSN 20734441, doi: 10.3390/w6010045.
Examples
AutoA(Time_series=hourly_time_series)