get.theta.typed.permute {IDSpatialStats}R Documentation

get the null distribution of the get.theta.typed function

Description

Does permutations to calculate the null distribution of get theta if there were no spatial dependence. Randomly reassigns coordinates to each observation permutations times

Usage

get.theta.typed.permute(
  posmat,
  typeA = -1,
  typeB = -1,
  r = 1,
  r.low = rep(0, length(r)),
  permutations,
  data.frame = TRUE
)

Arguments

posmat

a matrix with columns type, x and y

typeA

the "from" type that we are interested in, -1 is wildcard

typeB

the "to" type that we are interested i, -1 is wildcard

r

the series of spatial distances we are interested in

r.low

the low end of each range....0 by default

permutations

the number of permute iterations

data.frame

logical indicating whether to return results as a data frame (default = TRUE)

Value

theta values for all the distances we looked at

Author(s)

Justin Lessler and Henrik Salje

See Also

Other get.theta: get.theta(), get.theta.bootstrap(), get.theta.ci(), get.theta.permute(), get.theta.typed(), get.theta.typed.bootstrap()

Examples



data(DengueSimR01)

r.max<-seq(20,1000,20)
r.min<-seq(0,980,20)

#Lets see if there's a difference in spatial dependence by time case occurs
type<-2-(DengueSimR01[,"time"]<75)
tmp<-cbind(DengueSimR01,type=type)

typed.theta.R01<-get.theta.typed(tmp,typeA=1,typeB=2,r=r.max,r.low=r.min)
typed.theta.type.null<-get.theta.typed.permute(tmp, typeA=1, typeB=2, 
                                               r=r.max, r.low=r.min, permutations=100)



[Package IDSpatialStats version 0.4.0 Index]