get.theta.permute {IDSpatialStats} | R Documentation |
get the null distribution of the get.theta
function
Description
Does permutations to calculate the null distribution of get theta if there were no spatial dependence. Randomly reassigns coordinates to each observation permutations times
Usage
get.theta.permute(
posmat,
fun,
r = 1,
r.low = rep(0, length(r)),
permutations,
data.frame = TRUE
)
Arguments
posmat |
a matrix with columns type, x and y |
fun |
the function to evaluate |
r |
the series of spatial distances we are interested in |
r.low |
the low end of each range....0 by default |
permutations |
the number of permute iterations |
data.frame |
logical indicating whether to return results as a data frame (default = TRUE) |
Value
theta values for all the distances we looked at
See Also
Other get.theta:
get.theta()
,
get.theta.bootstrap()
,
get.theta.ci()
,
get.theta.typed()
,
get.theta.typed.bootstrap()
,
get.theta.typed.permute()
Examples
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
if(a[1]!=2) return(3)
if (b[1]==2) return(1)
return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
theta<-get.theta(x,fun,r=r.max,r.low=r.min)
theta.null<-get.theta.permute(x,fun,r=r.max,r.low=r.min,permutations=100)
null.ci<-apply(theta.null[,-(1:2)],1,quantile,probs=c(0.25,0.75))
plot(r.mid, theta$theta , type="l")
lines(r.mid, null.ci[1,] , lty=2)
lines(r.mid, null.ci[2,] , lty=2)
[Package IDSpatialStats version 0.4.0 Index]