get.tau.permute {IDSpatialStats} | R Documentation |
get the null distribution of the get.tau
function
Description
Does permutations to calculate the null distribution of get pi if there were no spatial dependence. Randomly reassigns coordinates to each observation permutations times
Usage
get.tau.permute(
posmat,
fun,
r = 1,
r.low = rep(0, length(r)),
permutations,
comparison.type = "representative",
data.frame = TRUE
)
Arguments
posmat |
a matrix appropriate for input to |
fun |
a function appropriate for input to |
r |
the series of spatial distances we are interested in |
r.low |
the low end of each range....0 by default |
permutations |
the number of permute iterations |
comparison.type |
the comparison type to pass as input to |
data.frame |
logical indicating whether to return results as a data frame (default = TRUE) |
Value
tau values for all the distances we looked at
Author(s)
Justin Lessler and Henrik Salje
See Also
Other get.tau:
get.tau()
,
get.tau.bootstrap()
,
get.tau.ci()
,
get.tau.typed()
,
get.tau.typed.bootstrap()
,
get.tau.typed.permute()
Examples
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
if(a[1]!=2) return(3)
if (b[1]==2) return(1)
return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
tau<-get.tau(x,fun,r=r.max,r.low=r.min,comparison.type = "independent")
tau.null<-get.tau.permute(x,fun,r=r.max,r.low=r.min,permutations=50,comparison.type = "independent")
null.ci<-apply(tau.null[,-(1:2)],1,quantile,probs=c(0.25,0.75))
plot(r.mid, tau$tau, ylim=c(1/max(tau$tau),max(tau$tau)), type="l", log="y")
lines(c(0,100),c(1,1), lty=3, col="grey")
lines(r.mid, null.ci[1,] , lty=2)
lines(r.mid, null.ci[2,] , lty=2)
[Package IDSpatialStats version 0.4.0 Index]