get.tau.bootstrap {IDSpatialStats} | R Documentation |
Bootstrap get.tau
values.
Description
Runs get.tau
on multiple bootstraps of the data. Is formulated
such that the relationship between points and themselves will not be
calculated
Usage
get.tau.bootstrap(
posmat,
fun,
r = 1,
r.low = rep(0, length(r)),
boot.iter,
comparison.type = "representative",
data.frame = TRUE
)
Arguments
posmat |
a matrix appropriate for input to |
fun |
a function appropriate as input to |
r |
the series of spatial distances wer are interested in |
r.low |
the low end of each range....0 by default |
boot.iter |
the number of bootstrap iterations |
comparison.type |
the comparison type to pass as input to |
data.frame |
logical indicating whether to return results as a data frame (default = TRUE) |
Value
a matrix containing all bootstrapped values of tau for each distance interval
Author(s)
Justin Lessler and Henrik Salje
See Also
Other get.tau:
get.tau()
,
get.tau.ci()
,
get.tau.permute()
,
get.tau.typed()
,
get.tau.typed.bootstrap()
,
get.tau.typed.permute()
Examples
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
if(a[1]!=2) return(3)
if (b[1]==2) return(1)
return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
tau<-get.tau(x,fun,r=r.max,r.low=r.min)
tau.boot<-get.tau.bootstrap(x,fun,r=r.max,r.low=r.min,boot.iter=50)
tau.ci<-apply(tau.boot[,-(1:2)],1,quantile,probs=c(0.25,0.75))
plot(r.mid, tau$tau ,ylim=c(min(tau.ci),max(tau.ci)), type="l", log="y")
lines(c(0,100),c(1,1), lty=3, col="grey")
lines(r.mid, tau.ci[1,] , lty=2)
lines(r.mid, tau.ci[2,] , lty=2)
[Package IDSpatialStats version 0.4.0 Index]