get.pi.ci {IDSpatialStats} | R Documentation |
Calculate bootstrapped confidence intervals for get.pi
values.
Description
Wrapper to get.pi.bootstrap
that takes care of calculating the
confidence intervals based on the bootstrapped values..
Usage
get.pi.ci(
posmat,
fun,
r = 1,
r.low = rep(0, length(r)),
boot.iter = 1000,
ci.low = 0.025,
ci.high = 0.975,
data.frame = TRUE
)
Arguments
posmat |
a matrix with columns type, x and y |
fun |
the function to decide relationships |
r |
the series of spatial distances wer are interested in |
r.low |
the low end of each range. 0 by default |
boot.iter |
the number of bootstrap iterations |
ci.low |
the low end of the ci...0.025 by default |
ci.high |
the high end of the ci...0.975 by default |
data.frame |
logical indicating whether to return results as a data frame (default = TRUE) |
Value
a matrix with a row for the high and low values and a column per distance
Author(s)
Justin Lessler
See Also
Other get.pi:
get.pi()
,
get.pi.bootstrap()
,
get.pi.permute()
,
get.pi.typed()
,
get.pi.typed.bootstrap()
,
get.pi.typed.permute()
Examples
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
if(a[1]!=2) return(3)
if (b[1]==2) return(1)
return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
pi<-get.pi(x,fun,r=r.max,r.low=r.min)
pi.ci<-get.pi.ci(x,fun,r=r.max,r.low=r.min,boot.iter=100)
plot(r.mid, pi$pi, type="l")
lines(r.mid, pi.ci[,2] , lty=2)
lines(r.mid, pi.ci[,3] , lty=2)
[Package IDSpatialStats version 0.4.0 Index]