est.transdist {IDSpatialStats} | R Documentation |
Estimate transmission distance
Description
this function estimates the mean transmission distance of an epidemic when given the locations and times of symptomatic cases and the mean and standard deviation of the generation time of the infecting pathogen
Usage
est.transdist(
epi.data,
gen.t.mean,
gen.t.sd,
t1,
max.sep,
max.dist,
n.transtree.reps = 100,
theta.weights = NULL
)
Arguments
epi.data |
a three-column matrix giving the coordinates ( |
gen.t.mean |
mean generation time of the infecting pathogen |
gen.t.sd |
standard deviation of generation time of the infecting pathogen |
t1 |
time step to begin estimation of transmission distance |
max.sep |
maximum number of time steps allowed between two cases (passed to the |
max.dist |
maximum spatial distance between two cases considered in calculation |
n.transtree.reps |
number of time to simulate transmission trees when estimating the weights of theta (passed to the |
theta.weights |
use external matrix of theta weights. If NULL (default) the matrix of theta weights is automatically estimated by calling the |
Value
a list containing the estimated mean distance of the transmission kernel (mu.est
) and its standard deviation (sigma.est
). Bounded estimates (bound.mu.est
and bound.sigma.est
) are also given for when the assumption of equal mean and standard deviation is violated.
Author(s)
John Giles, Justin Lessler, and Henrik Salje
References
Salje H, Cummings DAT and Lessler J (2016). “Estimating infectious disease transmission distances using the overall distribution of cases.” Epidemics, 17, pp. 10–18. ISSN 1755-4365, doi: 10.1016/j.epidem.2016.10.001.
See Also
Other est.wt:
est.wt.matrix()
,
est.wt.matrix.weights()
Other transdist:
est.transdist.bootstrap.ci()
,
est.transdist.temporal()
,
est.transdist.temporal.bootstrap.ci()
,
est.transdist.theta.weights()
,
get.transdist.theta()
Examples
set.seed(123)
# Exponentially distributed transmission kernel with mean and standard deviation = 100
dist.func <- alist(n=1, a=1/100, rexp(n, a))
# Simulate epidemic
a <- sim.epidemic(R=1.5,
gen.t.mean=7,
gen.t.sd=2,
min.cases=50,
tot.generations=12,
trans.kern.func=dist.func)
# Estimate mean and standara deviation of transmission kernel
b <- est.transdist(epi.data=a,
gen.t.mean=7,
gen.t.sd=2,
t1=0,
max.sep=1e10,
max.dist=1e10,
n.transtree.reps=10)
b