CSA_fragmentationPeakDetection {IDSL.CSA} | R Documentation |
CSA peakList MSP generation
Description
This function detects fragmentation peaks for the Composite Spectra Analysis (CSA) using IDSL.IPA peaklists.
Usage
CSA_fragmentationPeakDetection(CSA_hrms_address, CSA_hrms_file,
tempAlignedTableSubsetsFolder = NULL, peaklist, selectedIPApeaks = NULL,
RTtolerance, massError, minSNRbaseline, smoothingWindowMS1, scanTolerance, nSpline,
topRatioPeakHeight, minIonRangeDifference, minNumCSApeaks, pearsonRHOthreshold,
outputCSAeic = NULL)
Arguments
CSA_hrms_address |
path to the HRMS file |
CSA_hrms_file |
CSA HRMS file |
tempAlignedTableSubsetsFolder |
tempAlignedTableSubsetsFolder |
peaklist |
IDSL.IPA peaklist |
selectedIPApeaks |
A vector of selected IDSL.IPA peaks only when a number of IDSL.IPA peaks from one peaklist is processed. When 'NULL' is selected, the entire peaks in the peaklist are processed. |
RTtolerance |
retention time tolerance to detect common peaks |
massError |
Mass accuracy in Da |
minSNRbaseline |
A minimum baseline S/N threshold for IDSL.IPA pseudo-precursor m/z |
smoothingWindowMS1 |
number of scans for peak smoothing. |
scanTolerance |
a scan tolerance to extend the chromatogram for better calculations. |
nSpline |
number of points for further smoothing using a cubic spline smoothing method to add more points to calculate Pearson correlation rho values |
topRatioPeakHeight |
The top percentage of the chromatographic peak to calculate Pearson correlation rho values |
minIonRangeDifference |
Minimum distance (Da) between lowest and highest m/z to prevent clustering isotopic envelopes |
minNumCSApeaks |
Minumum number of ions in a CSA cluster |
pearsonRHOthreshold |
Minimum threshold for Pearson correlation rho values |
outputCSAeic |
When 'NULL' CSA EICs are not plotted. 'outputCSAeic' represents an address to save CSA EICs figures. |
Value
A dataframe peaklist of co-detected CSA analysis.
References
[1] Fakouri Baygi, S., Kumar, Y., Barupal, D.K. (2022). IDSL.IPA Characterizes the Organic Chemical Space in Untargeted LC/HRMS Data Sets. Journal of Proteome Research, 21(6), 1485-1494, doi:10.1021/acs.jproteome.2c00120
[2] Fakouri Baygi, S., Fernando, S., Hopke, P.K., Holsen, T.M., Crimmins, B.S. (2021). Nontargeted discovery of novel contaminants in the Great Lakes region: A comparison of fish fillets and fish consumers. Environmental Science & Technology, 55(6), 3765-3774, doi:10.1021/acs.est.0c08507