isurvfit {IDPSurvival} | R Documentation |
Create survival curves based on the IDP model
Description
This function creates survival curves from right censored data using the prior near-ignorance Dirichlet Process (IDP).
Usage
isurvfit(formula, data, s=0.5, weights, subset, display=TRUE,
conf.type=c('exact', 'approx', 'none'), nsamples=10000,
conf.int= .95)
Arguments
formula |
a formula object, which must have a
|
data |
a data frame in which to interpret the variables named in the |
s |
sets the value of the prior strength s of the Dirichlet Process. |
weights |
the weights must be finite and nonnegative; it is strongly recommended that
they be strictly positive, since zero weights are ambiguous, compared
to use of the |
subset |
expression saying that only a subset of the rows of the data should be used in the fit. |
display |
determines whether the survival curves have to be plotted (TRUE) or not (FALSE). |
conf.type |
a variable saying how the credible interval shold be computed: 'exact': Monte-Carlo smapling from the exact distribution, 'approx': Gaussian approximation, 'none': no credible interval is computed. |
nsamples |
number pf samples used to approximate the credible intervals
if |
conf.int |
confidence level of the credible interval. |
Details
The estimates are obtained using the IDP estimator by Mangili and others (2014) based on the prior near-ignorance Dirichlet Process model by Benavoli and others (2014).
Value
an object of class "isurvfit"
.
See isurvfit.object
for
details. Methods defined for survfit objects are
print
and plot
.
References
Benavoli, A., Mangili, F., Zaffalon, M. and Ruggeri, F. (2014). Imprecise Dirichlet process with application to the hypothesis test on the probability that X < Y. ArXiv e-prints, http://adsabs.harvard.edu/abs/2014arXiv1402.2755B.
Mangili, F., Benavoli, A., Zaffalon, M. and de Campos, C. (2014). Imprecise Dirichlet Process for the estimate and comparison of survival functions with censored data.
See Also
isurvfit.object
,
plot.isurvfit
,
Surv
.
Examples
data(aml)
fit <- isurvfit(Surv(time, cens) ~ 1, data=aml, display=TRUE, nsamples=1000)
legend('topright', c("Lower expectation",
"Upper expectation","confidence intervals"), lty=c(1,1,2),lwd=c(1,2,1))
title("IDP survival curve (s=0.5) \nAcute Myelogenous Leukemia dataset")
data(Aids2)
dataset <- Aids2
dataset["time"]<-dataset[4]-dataset[3]
dataset[5]<-as.numeric(unlist(dataset[5]))
fit <- isurvfit(Surv(time, status) ~ T.categ, dataset,s=1,
subset=(!is.na(match(T.categ, c('blood','haem','het')))),
nsamples=1000,conf.type='none')
legend('topright',c("Heterosexual contact","Hemophilia","Blood"),
title="Transmission category:",lty=c(1,1,1),col=c(1,2,3),pch=c(1,2,3))
title("IDP survival curve (s=1) \nAids dataset")
print(fit)
leukemia.surv <- isurvfit(Surv(time, cens) ~ group, data = aml, display=FALSE)
plot(leukemia.surv)
legend(100, .9, c("Maintenance", "No Maintenance"), lty=c(1,1),lwd=c(2,1),
col=c('black','red'),pch=c(1,2))
title("IDP Curves\nfor AML Maintenance Study")