qgev.d {IDF} | R Documentation |
d-GEV quantile function
Description
Quantile function of duration-dependent GEV distribution (inverse of the cumulative probability distribution function)
Usage
qgev.d(p, mut, sigma0, xi, theta, eta, d, tau = 0, eta2 = 0, ...)
Arguments
p |
vector of probabilities |
mut , sigma0 , xi |
numeric value, giving modified location, modified scale and shape parameter |
theta |
numeric value, giving duration offset (defining curvature of the IDF curve for short durations) |
eta |
numeric value, giving duration exponent (defining slope of the IDF curve) |
d |
positive numeric value, giving duration |
tau |
numeric value, giving intensity offset |
eta2 |
numeric value, giving a second duration exponent |
... |
additional parameters passed to |
Details
The duration dependent GEV distribution is defined after [Koutsoyiannis et al., 1998]:
G(x)= \exp[-\left( 1+\xi(x/\sigma(d)-\mu_t) \right)^{-1/\xi}]
with the duration dependent scale \sigma(d)=\sigma_0/(d+\theta)^\eta
and
modified location parameter \mu_t=\mu/\sigma(d)
.
For details on the d-GEV and the parameter definitions, see IDF-package.
Value
list containing vectors of quantile values for given probabilities. The first element of the list are the q. values for the first given duration etc.
See Also
Examples
p <- c(0.5,0.9,0.99)
# calulate quantiles for one duration
qgev.d(p=p,mut=4,sigma0=2,xi=0,theta=0.1,eta=0.3, d=1)
# calculate quantiles for sequence of durations
ds <- 2^seq(0,4,0.1)
qs <- lapply(ds,qgev.d,p=p,mut=4,sigma0=2,xi=0,theta=0.1,eta=0.3)
qs <- simplify2array(qs)
plot(ds,qs[1,],ylim=c(3,20),type='l',log = 'xy',ylab='Intensity',xlab = 'Duration')
for(i in 2:3){
lines(ds,qs[i,],lty=i)
}
legend('topright',title = 'p-quantile',
legend = p,lty=1:3,bty = 'n')