CAIC {ICglm} | R Documentation |
Consistent Akaike's Information Criterion and Consistent Akaike's Information Criterion with Fisher Information
Description
Consistent Akaike's Information Criterion (CAIC) and Consistent Akaike's Information Criterion with Fisher Information (CAICF) for "lm" and "glm" objects.
Usage
CAIC(model)
CAICF(model)
Arguments
model |
a "lm" or "glm" object. |
Details
CAIC (Bozdogan, 1987) is calculated as
-2LL(theta) + k(log(n) + 1)
CAICF (Bozdogan, 1987) as
-2LL(theta) + 2k + k(log(n)) + log(|F|)
F is the Fisher information matrix.
Value
CAIC or CAICF measurement of the model.
References
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
Examples
x1 <- rnorm(100, 3, 2)
x2 <- rnorm(100, 5, 3)
x3 <- rnorm(100, 67, 5)
err <- rnorm(100, 0, 4)
## round so we can use it for Poisson regression
y <- round(3 + 2*x1 - 5*x2 + 8*x3 + err)
m1 <- lm(y~x1 + x2 + x3)
m2 <- glm(y~x1 + x2 + x3, family = "gaussian")
m3 <- glm(y~x1 + x2 + x3, family = "poisson")
CAIC(m1)
CAIC(m2)
CAIC(m3)
CAICF(m1)
CAICF(m2)
CAICF(m3)
[Package ICglm version 0.1.0 Index]