ISE_mixnorm {ICV} | R Documentation |
The ISE function in the case when the underlying density is the specified mixture of normal distributions.
Description
Computing ISE(h)
for given h
in the case when the underlying density is the specified mixture of normal distributions and the Gaussian kernel is used to compute the ultimate density estimate.
Usage
ISE_mixnorm(h, x, w, mu, sdev)
Arguments
h |
numerical vector of bandwidth values, |
x |
numerical vector of data, |
w |
vector of weighs (positive numbers between 0 and 1 that add up to one), |
mu |
vector of means, |
sdev |
vector of standard deviations. |
Details
Computing ISE(h)
in the case when the true density is the mixture of normal distributions defined by the vector of weights w
, the vector of means \mu
, and the vector of standard deviations \sigma
. See expression (2.3) of Marron and Wand (1992). It is assumed that the normals are defined as parsimonious as possible. The normal distributions in the mixture should be ordered such that the means in \mu
are arranged in a nondecreasing order. The Gaussian kernel is to be used for computing the ultimate density estimate.
Value
The vector of ISE values corresponding to the specifies values of h
.
References
Marron, J.S., Wand, M.P. (1992). Exact Mean Integrated Squared Error. The Annals of Statistics, 20(2), 712-736.
See Also
mixnorm
, h_isemixnorm
, MISE_mixnorm
.
Examples
## Not run:
harg=seq(0.01,1,len=100)
w=c(3/4,1/4)
mu=c(0,3/2)
sdev=c(1,1/3)
# The vectors w, mu, and sdev define the skewed bimodal density of Marron and Wand (1992).
dat=mixnorm(300,w,mu,sdev)
h_ISE=round(h_isemixnorm(dat,w,mu,sdev),digits=4)
ISEarray=ISE_mixnorm(harg,dat,w,mu,sdev)
dev.new()
plot(harg,ISEarray,'l',lwd=3,xlab="h, n=300",ylab="ISE",cex.lab=1.7,cex.axis=1.7,main="")
title(main="ISE(h)",cex.main=1.7)
legend(0.2,0.08,legend=paste("h_ISE=",h_ISE),cex=2)
## End(Not run)